Saturation correction using electron data

Using DWC and AHCAL

Olin Pinto DESY, 18th December 2018

Selection: Centre of gravity

Basic cuts: Data and Simulation for 80GeV electron

From Wire Chamber segxnsegy

cog_x and cog_y in data 240 220 000 80000 200 70000 180 60000 160 140 50000 120 40000 100 30000 -90 80 seaxnsea cog xy Entries 101101 60 2.870038e+07 -100 20000 Entries -100 Mean x 82.47 82.27 Mean x 40 -58.82 Mean v -59.5 Mean y -110 10000 -110 🔁 Std Dev x 11.23 10.32 Std Dev x 20 Std Dev y 9.097 Std Dev y 9.046 110 120 -120^C 30 0 **90** 100 80 60 40 70 80 50 60 90 100 110 120 CoG X

Centre of gravity X: Between 70 mm to 80 mm Centre of gravity Y: Between -50 mm to -40 mm

Selection: Nhits and Cog_Z

Basic cuts: Data and Simulation for 80GeV electron

Number of hits: Between 200 to 300 hits Center of gravity along Z: 180 mm to 280 mm

Layer wise pixels comparison

80 GeV electron

Layer 2 and 3

Red: Data without de-saturation Blue: 2433 pixels without de-saturation Brown: 2533 pixels without de-saturation Green: 2633 pixels without de-saturation Pink: 2668 pixels without de-saturation

Layer 4 and 5

Red: Data without de-saturation Blue: 2433 pixels without de-saturation Brown: 2533 pixels without de-saturation Green: 2633 pixels without de-saturation Pink: 2668 pixels without de-saturation

Layer 8 and 9

Red: Data without de-saturation Blue: 2433 pixels without de-saturation Brown: 2533 pixels without de-saturation Green: 2633 pixels without de-saturation Pink: 2668 pixels without de-saturation

DESY.

Page 8

Red: Data without de-saturation Blue: 2433 pixels without de-saturation Brown: 2533 pixels without de-saturation Green: 2633 pixels without de-saturation

Layer 10 and 11

Layer 12 and 13

Red: Data without de-saturation Blue: 2433 pixels without de-saturation Brown: 2533 pixels without de-saturation Green: 2633 pixels without de-saturation Pink: 2668 pixels without de-saturation

Layer 14 and 15

Red: Data without de-saturation Blue: 2433 pixels without de-saturation **Brown: 2533 pixels without de-saturation** Green: 2633 pixels without de-saturation

Pink: 2668 pixels without de-saturation

No definite number of pixel agree well for all layers

Energy Sum Layer wise 80 GeV

DESY.

Red: Data

Blue: Simulation 2533 pixels without de-sat

Energy sum per layer

nHits layer-wise

Red: Data Blue: Simulation 2533 pixels without de-sat

Hits per layer

To do:

- Change the beam gun to -50m taking in account the scintillator position.
- From nHits/layer: Investigate the layer 29 check if there is hit in only one channel by looking into the hit map.
- Perform the similar study of SiPM with de-saturation "note if any changes occur".
- Perform the study for different electron energies (100,90,70,60,50,40,30-GeV).
- Energy distribution in Pre-shower.
- For light yield compare at channel level with Mainz data.

Further plan : Work on shower shapes for different particles (both lateral and transverse study).

Thank you

BACKUP

nHits layer-wise

Red: Data Blue: Simulation 2533 pixels without de-sat

Hits per layer

Centre of gravity

Run number: 61156

Hit Energy: Layer-wise Comparative study

Layer 2 and 3

Layer 4 and 5

DESY.

Layer 8 and 9

Layer 10 and 11

Layer 12 and 13

Layer 14 and 15

Basic event selection for 80 GeV electron – June 2018 data

Run number: 61156

- Number of hits: Between 200 to 300 hits
- Center of gravity along Z: 180 mm to 280 mm

Basic event selection for 80 GeV electron – June 2018 data

Run number: 61156

Centre of gravity X: Between 70 mm to 80 mm

Centre of gravity Y: Between -50 mm to -40 mm

Choosing 1cm in centre of a tile: Pick events with maximum amplitude

Saturation Correction

80 GeV electron June data, Run number: 61156

Saturation Correction for 80 GeV electron - June data

DESY.

Saturation Correction

80 GeV electron June data, Run number: 61156

The transition region of HG-LG around 5 MIP not fully understood

Gain Calibration

May 2018

- Fitted channels from each LED voltages are combined.
- May: Short LED no power pulsing run.
 - Gain distribution for May which consists only AHCAL(21, 888 channels). •
 - Remaining 1373 channels acquire gain value from the mean of the corresponding chip.

Total Gain Distribution

94% channels fitted

Gain Calibration

June 2018

- Gain distribution from June, includes the Tokyo layer (22464 channels). •
- Long LED no power pulsing run on 25.06.2018

98% channels fitted

Gain Calibration

October 2018

- AHCAL + Tokyo layer.
- Long LED power pulsing run on 17.10.2018
- 20 mV steps with 2000 cycles each run.

Hit K Data and MC

HitK Data and MC

Hit energy At lower MIP values

Saturation Correction

100 GeV electron June data, Run number: 61217

Saturation Correction

100 GeV electron June data, Run number: 61217

Saturation Correction for 100 GeV electron - June data

Saturation Correction for 100 GeV electron - June data

Hit energy layer wise

80 GeV electron

Hit energy layer wise

100 GeV electron

Page 39

Gain Correlation

Between two days

Gain Correlation of May_07th and May_16th

Gain of Tail Catcher

Module 43 to 54

Total Gain Distribution

Light Yield

Pre-shower

,

,

Light Yield

Tail Catcher

New one here light yield of Tail catcher

Light Yield

Tokyo layer

Hit energy for 80 GeV and 100 GeV electron

Layer 2

Conclusion

	Gain	
AHCAL	Pre-Shower	Tail Catcher
~16 ADC	Varying from ~15-16 ADC	~15 and ~30 ADC
	Light Yield	
AHCAL	Pre-Shower	Tail Catcher
~14 pix/MIP	Varying from ~14 pix/MIP	~13 and ~27 pix/MIP
	Saturation Correction	
2433	2533 and 2668	2533
Under-estimates the data	Over-estimates the data	Agrees to certain extent with data