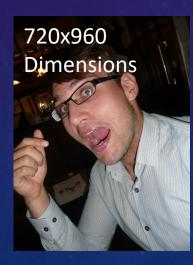
PRELIMINARY ADVENTURES IN NEURAL NETWORKS FOR PARTICLE PHYSICS

JACK ROLPH

DASCRIMUNATION OF SETS USING MAONE LEARNING IN 5 DIMENSIONS
5 Dimentions is basicaly 20+ 30 20. Jet ABD Jet Brodescrimination is bod.

EXPLORING THE PROBLEM OF NEURAL NETS IN PARTICLE PHYSICS

- THERE ARE COMPLICATED NON-LINEAR PROBLEMS IN DETECTOR PHYSICS THAT COULD BE SOLVED USING NEURAL NETWORKS:
 - PARTICLE IDENTIFICATION
 - ENERGY RECONSTRUCTION
- FROM PHYSICS STANDPOINT, NEURAL NETWORK ACTS AS A FUNCTION THAT SOLVES A PARTICULAR HIGH-DIMENSIONAL PROBLEM BY TRIAL, ERROR AND IMPROVEMENT.
- EXAMPLE:



JACK, THE BRITISH POKEMON

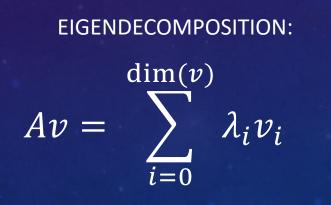
Jack is the Pokemon in the picture (151 dimensions)

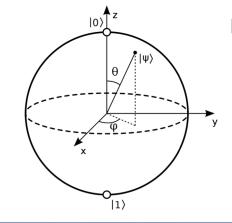
EXPLORING THE PROBLEM OF NEURAL NETS IN PARTICLE PHYSICS

- WHY DON'T WE DO THIS ALREADY? NEW FIELD; MAIN BODY OF EXISTING RESEARCH NOT GEARED TOWARDS PARTICLE PHYSICS
- PROBLEMS TO SOLVE FOR NEURAL NETS IN PARTICLE PHYSICS:
 - OFTEN TOO MANY DIMENSIONS FOR QUICK TRAINING
 - TECHNIQUES THAT WORK WELL IN 2-DIMENSIONS MUST BE EXTENDED TO N-DIMENSIONS
 - WHAT INPUT DATA SHOULD I USE? (HUMANS ARE BIASED)
 - CAN I LEARN SOMETHING PHYSICAL FROM HOW MY NEURAL NET SOLVED THE PROBLEM

DIMENSIONALITY REDUCTION USING PRINCIPLE COMPONENT ANALYSIS (PCA)

- PCA VERY USEFUL TOOL IN DATA SCIENCE TO:
 - UNDERSTAND THE COVARIANCES BETWEEN THE VARIABLES OF A FIT
 - REDUCE THE DIMENSIONALITY OF MULTIVARIATE DATA
- ABSTRACT TOOL: QUITE DIFFICULT TO UNDERSTAND THE FIRST TIME AROUND!





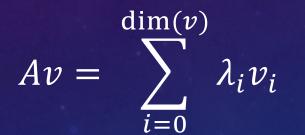
BLOCH SPHERE:

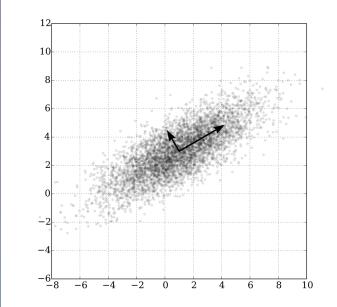
- PSI CAN BE DECOMPOSED INTO BASIS STATES
- LENGTH OF EIGENVALUE IS 'IMPORTANCE' OF BASIS VECTOR IN SPACE

DIMENSIONALITY REDUCTION USING PRINCIPLE COMPONENT ANALYSIS (PCA)

 EIGENDECOMPOSITION OF COVARIANCE (CORRELATION) MATRIX YIELDS 'DIRECTIONS OF MOST STATISTICAL VARIATION AND SIGNIFICANCE

EIGENDECOMPOSITION:





BIVARIATE GAUSSIAN:

NEEDS A COVARIANCE MATRIX TO EXPLAIN

EIGENVECTORS -> DIRECTION OF VARIANCE

EIGENVALUES -> SIGNIFICANCE OF DIRECTION OF VARIANCE

BETTER TO PROJECT IN EIGENVECTORS

EXAMPLE OF PCA: MNIST DATASET

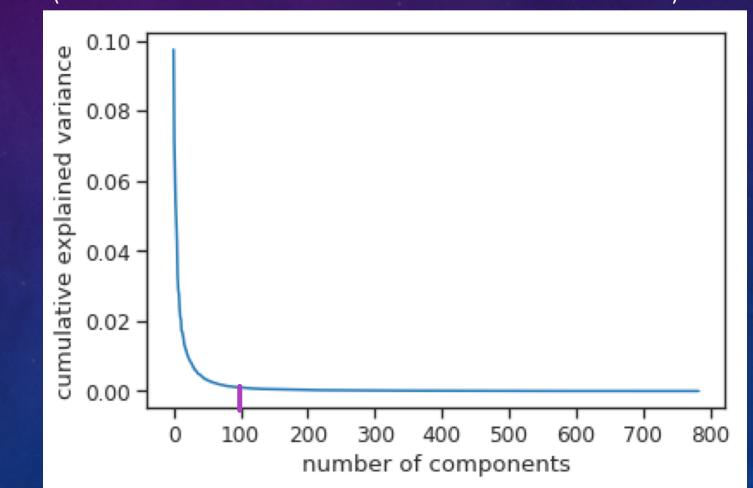
60,000 images of 28x28 pixel handwritten numbers (784 degrees of freedom)

5856294625

9680746068

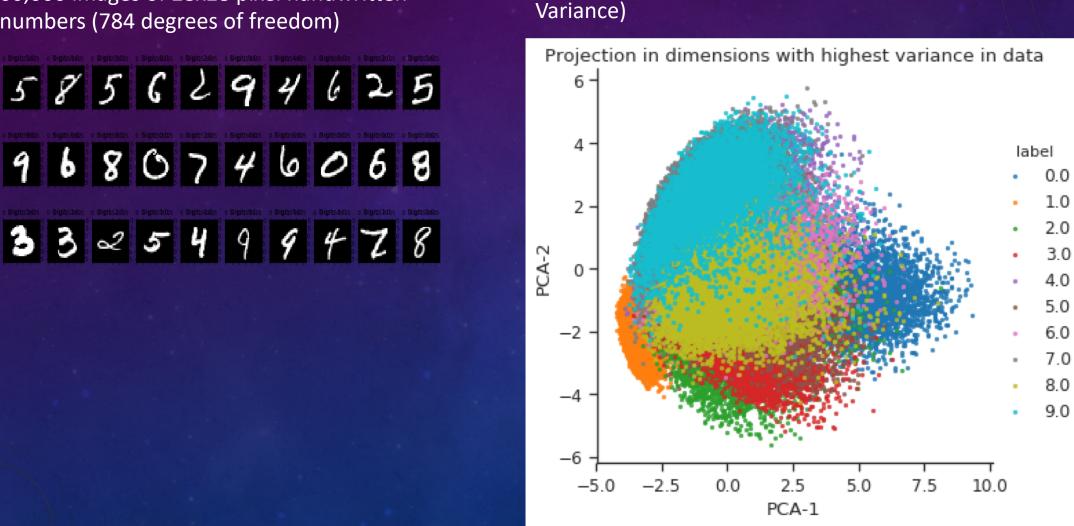
3325499428

Explained variance (MOST OF VARIANCE EXPLAINED BY 100 DEGREES OF FREEDOM)



EXAMPLE OF PCA: MNIST DATASET

60,000 images of 28x28 pixel handwritten numbers (784 degrees of freedom)



Plot in PCA-1 (15% variance) and PCA-2 (8%

DIMENSIONALITY REDUCTION USING PRINCIPLE COMPONENT ANALYSIS (PCA)

- WE HAVE EVEN MORE DIMENSIONS IN A 'CALORIMETER IMAGE' I.E. N DEPTH, TIME
- PLAN:
 - CREATE BASIS VECTORS OF CALORIMETER IMAGES FROM MONTE CARLO SIMULATIONS OF ELECTRONS, MUONS, PIONS ETC
 - RUN THEM THROUGH A PCA TO OBTAIN A SET OF BASIS VECTORS, WHICH IS THEN FED TO NEURAL NET.
 - TYPICALLY THIS REDUCES PROCESSING TIME DRASTICALLY (30S -> 8S FOR MNIST NEURAL NET
- CANNOT CAPTURE NON-LINEARITY WITH PCA, SO FAIRLY USELESS IN JET DISCRIMINATION ALONE.
- USED TO REDUCE THE DIMENSIONS ONLY! NEURAL NETWORK HANDLES NON-LINEARITY

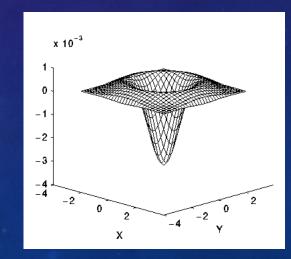
EXPLORING THE PROBLEM OF NEURAL NETS IN PARTICLE PHYSICS

- INITIAL PROBLEMS TO SOLVE FOR NEURAL NETS IN PARTICLE PHYSICS:
 - OFTEN TOO MANY DIMENSIONS FOR FEASIBLE TRAINING
 - TECHNIQUES THAT WORK WELL IN 2-DIMENSIONS MUST BE EXTENDED TO HIGHER
 INPUT DIMENSIONS
 - WHAT INPUT DATA SHOULD I USE? (HUMANS ARE BIASED)
 - CAN I LEARN SOMETHING PHYSICAL FROM HOW MY NEURAL NET SOLVED THE
 PROBLEM

- CONVOLUTIONAL NEURAL NETWORKS VERY GOOD AT IMAGE RECOGNITION
- CNN 'LEARNS' BY FINDING PASSING A MATRIX KERNEL (FILTER) OVER A PICTURE TO HIGHLIGHT AN OPTIMAL FEATURE FOR A PARTICULAR PROBLEM

LAPLACIAN OF GAUSSIAN = SMOOTHING (GAUS) + 2ND DERIVATIVE HIGHLIGHTING (LAPLACIAN) = EDGE FILTER

0	1	1	2	2	2	1	1	0
1	2	4	5	5	5	4	2	1
1	4	5	э	0	θ	5	4	1
2	5	Э	- 12	-24	-12	Э	5	2
2	5	0	-24	-40	-24	0	5	2
2	5	Э	- 12	-24	-12	Э	5	2
1	4	5	э	0	э	5	4	1
1	2	4	5	5	5	4	2	1
0	1	1	2	2	2	1	1	0



- CONVOLUTIONAL NEURAL NETWORKS VERY GOOD AT IMAGE RECOGNITION
- WITH HIGHLIGHTED FEATURES, THEN CONDENSED TO A SMALLER MATRIX WITH RELEVANT INFO (POOLING)

input neurons

0000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
Visualization of 5 x 5 filter convolving around an input volume and p

first hidden layer

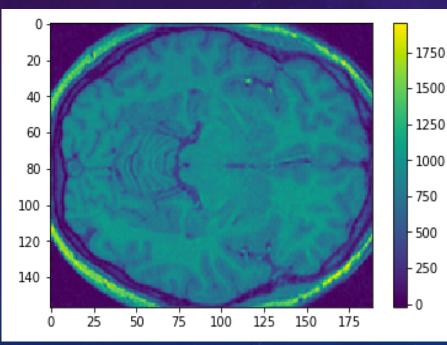
0	0	0	0	0	0	0	0	0	0	0	0	Ō	0	Ō	Ō	0	0	0	0	0	0	00)
0	0	Ó	Ó	Ó	Ó	Ó	Ó	Ò	0	0	Ó	0	Ó	Ó	0	Ó	0	0	Ó	Ó	0	00)
0																						00	
õ																						00	
2	-	-	-	-	-	_	_	-	-	_	_	-	_	_	-	_	_	-	-	-	-	00	
X	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	00	
-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-		
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ŏč	
-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-		-	-	ŏč	
_		_	_	_	-			-	-	_	-	-	-	_			_		-	_	-	õõ	
õ	õ	ŏ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õč)
0	0	0	0	Ō	0	0	0	0	0	Ō	0	0	0	0	0	0	Ō	0	0	0	0	00)
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00)
õ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		00	
õ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	= :	00	
õ																						00	
õ	-	_	_	_	-	-	-	-	-	_	_	-	-	-	-	_	_	-	_	-	-	00	2
2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		00	
×	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	= :		
X	X	X	X	X	_	ŏ	_	_	_	_	_	_	_	_	_	_	_	_	X	X	X	ăř	5
ă	ŏ	ŏ	ŏ	ŏ		-	-	-	-	~	-	~	-	-	-	-	-	-	ŏ	ŏ	ŏ,	ŏŏ	í.,
ŏ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		ŏč	
_	-	-	-	-				-	-	-	-	-		-	-	-	-		-	-	-		

Visualization of 5 x 5 filter convolving around an input volume and producing an activation map

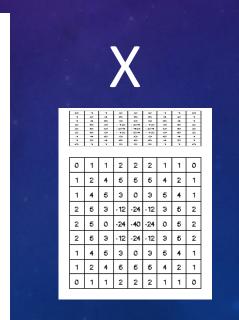
ORIGINAL IMAGE

EDGE FILTER APPLIED

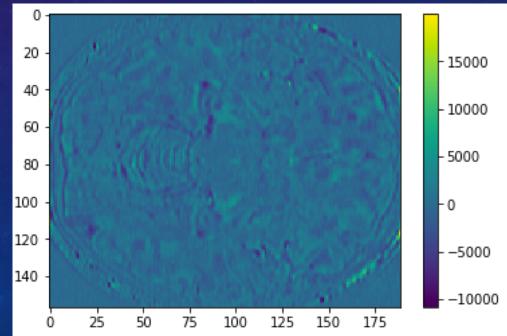
- PHYSICS 'PICTURES' HAVE FAR MORE DIMENSIONS THAN MOST APPLICATIONS AT PRESENT (COMPUTER VISION ONLY NEEDS 2, KERAS GOES UP TO 4 DIMENSIONS)
- IN ORDER TO HIGHLIGHT FEATURES IN N-DIMENSIONS, WE (PROBABLY) NEED N-DIMENSIONAL KERNELS
- EXTENDED THIS TO N-DIMENSIONS BY SIMPLY EXTENDING THE PROCESS USED TO CONVOLVE FILTERS



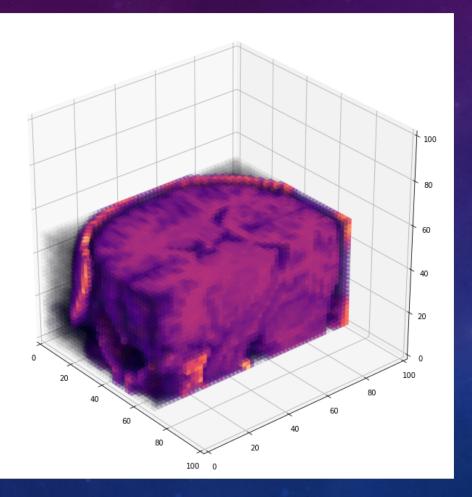
ORIGINAL IMAGE



EDGE FILTER APPLIED (SOBEL X IN 3D)



ORIGINAL IMAGE



EDGE FILTER APPLIED (SOBEL X IN 3D)

