FCAL workshop Tel Aviv September 18, 2004

## A few points about Luminosity

Sergey Kananov Tel Aviv University

#### **Outline:**

- Introduction
- Luminosity
- Disruption
- Beamstrahlung

### INTRODUCTION

$$\sqrt{S} = 500 \text{ GeV}$$



There are 3 effects causing the collision energy to be shifted from its nominal value.

- Initial State Radiation
- Beamspread
- Beamstrahlung

- ullet beam-beam interaction  $\longrightarrow$  two main enects
- disruption particles trajectories are bent by field provided by the oncoming beam
- ullet beamstrahlung  $\longrightarrow$  particles radiate due to disruption
- impact of disruption  $\rightarrow$  deformation of the beam sizes during collision  $\rightarrow$  luminosity enhacement
- impact of beamstrahlung  $\rightarrow$  loss of the energy
- $\rightarrow$  degradation of beam energy

| Center of mass energy            | $E_{cm} = \sqrt{s}$     | GeV                | 500      |
|----------------------------------|-------------------------|--------------------|----------|
| Repetion rate                    | $f_{rep}$               | Hz                 | 5        |
| Bunch charge [10 <sup>10</sup> ] | N                       |                    | 2        |
| Number of bunches                | $n_b$                   |                    | 2820     |
| Transverse bunch sizes           | $\sigma_x/\sigma_y$     | nm                 | 553/5    |
| Bunch length                     | $\sigma_z$              | $\mu\mathrm{m}$    | 300      |
| Geometric emittances             | $\epsilon_x/\epsilon_y$ | $\mu$ m. $\mu$ rad | 10/0.030 |
| Beta functions                   | $\beta_x/\beta_y$       | mm                 | 15/0.4   |
| Geometric luminosity $[10^{34}]$ | $\mathcal{L}_0$         | $cm^{-2}s^{-1}$    | 1.6      |
| Disruption parameters            | $D_x/D_y$               |                    | 0.22/25  |

Table 1.1: Beam parameters for the ILC

### Luminosity

$$R_{ev} = \mathcal{L}_0 \sigma_{int}$$

The event rate,  $R_{ev}$ , in a collider is proportional to the interaction cross section  $\sigma_{int}$ , and the factor of proportionality is called the LUMINOSITY.

Optimal  $luminosity \rightarrow perfect transverse overlap of two equal Gaussian beams.$ 

- $\sigma_x^+ = \sigma_x^- = \sigma_x$  and  $\sigma_y^+ = \sigma_y^- = \sigma_y$
- $N_{+} = N_{-} = N$  where N is the number of particles per bunch (bunch charge)
- $\sigma_{x(y)}$  are the transverse dimensions of the beams, The geometric luminosity,  $\mathcal{L}_0$ ,

$$\mathcal{L}_0 = \frac{f_{rep} n_b N^2}{4\pi \sigma_x \sigma_y}$$

- $f_{rep}$  is the pulse (train) repetition frequency
- $n_b$  is the number of bunches per pulse (train).

## Luminosity

- $R = \sigma_x/\sigma_y \rightarrow {f aspect\ ratio}$
- $R = 1 \rightarrow \text{round beam}$
- $R \gg 1 \rightarrow \text{flat beam}$
- The vertical and horizontal beam dimensions can not be chosen arbitrary

$$\pi \sigma_{x,y}^2 = \epsilon_{x,y} \beta_{x,y}^*$$

- $\epsilon \rightarrow$  transverse emittance, represents the phase-space volume occupied by beam particles.
- $\beta \to \text{Currant-Snyder } \beta^*$  function, reflects the beam optics properties.

### Disruption

- beam transverse sizes,  $\sigma_x$ ,  $\sigma_y$ , are in the nanometer (10<sup>-9</sup>m) range
- beam-beam forces are very strong  $|E| \sim |B| \sim Ne/\sigma$
- as bunches pass through each other, the particles bend inward due to the attraction of opposite charges  $\longrightarrow$  DISRUPTION or PINCH effect
- The global disruption parameter *D* characterized the strength of the effect, (dimensionless measure of the amount of pinching)

$$D_{x(y)} = \frac{2Nr_e}{\gamma} \frac{\sigma_z}{\sigma_{x(y)}(\sigma_x + \sigma_y)}$$

- $\gamma$  denote the Lorentz factor of the beam
- $r_e = 2.82 \times 10^{-13} cm$  classical electron radius.



• beam vertical size,  $\sigma_y$ , decreases with  $D_y$ 

$$H_D = \sigma_x \sigma_y / \sigma_x^{eff} \sigma_y^{eff}$$

•  $H_D$  is the luminosity enhancement factor

• The effective luminosity of the collider (under disruption)

$$\mathcal{L} = H_D \mathcal{L}_0$$

•  $H_D$  as a function of a disruption parameter D

Analytic derivation of  $H_D$  is very difficult

• Round beam, small D gives

$$H_D = 1 + 2D/3\sqrt{\pi}$$

- $D > 1 \longrightarrow$  computer simulaitons
- Paraxial beam  $\longrightarrow \mathcal{L} \to \infty$

Beam can be focused to a SINGULAR POINT, BUT beam has always an inherent divergence.

• Parameter  $A_{x,y} = \sigma_z/\beta^* \sim \epsilon$ , where  $\epsilon$  is emittance for a given beam size  $\sigma_{x,y}$ 



•  $H_D \longrightarrow$  function of D and A

$$H_D \simeq 1 + D^{1/4} (\frac{D^3}{1 + D^3}) [\ln(\sqrt{D} + 1) + 2\ln(0.8/A)]$$

- Flat beam  $\longrightarrow$  2 parameters  $H_{D_x}$  and  $H_{D_y}$   $H_D = (H_{D_x})^1/2 \cdot (H_{D_y})^1/3$
- Additional parameter  $\longrightarrow$  initial beam offset (displacement of the whole bunch),  $\Delta_{x,y}$
- $H_D \longrightarrow$  function of D, A and  $\Delta$

values of the offset. A=0.4.

5.0 8 1.2 2.0 3.0 4.0 1.0 0.5 0 10 20 30 40 50

Fig.2. Enhancement factor for flat Gaussian beams for various values of the offset  $\Delta_y$ .  $A_y$ =0.2 in Fig.2a and 1.0 in Fig.2b.



Fig. 4. Enhancement factor  $H_D$  vs. initial offect  $\Delta_y$  for various values of the disruption parameter  $D_y$ . Flat Gaussian earn.  $A_y$ =0.2 in Fig.4a and 1.0 in Fig.4b. An anaptic expression is used for the curve  $D_y$ =0.



•  $D_y = 0 \longrightarrow H_D \propto exp(-\Delta_y^2/4\sigma_y^2)$ 

- small  $D_y \longrightarrow H_D$  rapidly falls off
- large  $D_y \longrightarrow H_D$  goes down slowly

The last two figures are from Kaori Yokoya and Pisin Chen, KEK preprint 91-2

## Disruption angle



- Outgoing angles depend of initial particle position,  $(x_0, y_0)$
- small  $D_y \longrightarrow$  the rms angles in both directions are the same,

$$\theta_{x,rms} = \theta_{y,rms} = 0.55\theta_0$$



where 
$$\theta_0 = D_X \sigma_x / \sigma_z = D_y \sigma_y / \sigma_z$$

- large  $D_y \longrightarrow \theta_{y,rms} = 0.55\theta_0/f(D_y)$ where  $f(D_y) = (1 + (0.5D_y)^5)^{1/6}$  goes up with  $D_Y$
- The reason particle trajectories are bent
- The max angles are simply  $\theta_{max} = 2.5\theta_{rms}$

# Center-of-Mass Deflection



• The main deflection angle of the entire bunch (in presence of vertical offset  $\Delta_y$ )

$$\Theta_y = 0.5\sigma_y/\sigma_z F(D_y, \Delta_y)$$

• small  $\triangle$  and  $D_y \longrightarrow \Theta_y \propto \theta_0 \Delta_y / \sigma_y$ 

empirical formula for  $F(D_y, \Delta_y)$ 

$$F = \delta [C_1 + C_2 \delta^2 + C_3 \delta^4]^{-1/4}$$

where  $C_1, C_2$  and  $C_3$  are the functions of  $D_y, A_y$  and  $\delta = \Delta_y/\sigma_y$ 

• The maximum disruption angle  $\longrightarrow$  is the sum of center-of-mass deflection angle  $\Theta_y$  (in presence of offsets) and maximum angle in the absence of offsets,  $\theta_y$ 

### Beamstrahlung

- since the trajectories of the moving particles are bent they emit radiation called beamstrahlung.
- ullet  $\Upsilon$  parameter  $\longrightarrow$  dimensionless parameter controls overall radiation intensity

$$\Upsilon \equiv \frac{2 \langle E_c \rangle}{3 E_{beam}} \simeq \frac{5}{6} \frac{N r_e^2 \gamma}{\alpha \sigma_z (\sigma_x + \sigma_y)}$$

 $< E_c > = 3/2 \cdot \gamma^3/\rho$ , average photon critical energy.  $\rho$  is radius of curvature

$$\Upsilon = \gamma B/B_c$$

B the magnetic field and  $B_c$  the critical magnetic field,

(Schwinger field) $B_c \approx 4.4 \text{GTeslas}$ .

- Υ is not a constant during collision
- The average value of  $\Upsilon$  for proposed collider is  $\sim 0.05$ .
- number of photons emitted per electron,  $n_{\gamma}$ ,

$$n_{\gamma} \approx 2.59 \left[\frac{\alpha^2 \sigma_z \Upsilon}{r_e \gamma}\right] U_0(\Upsilon)$$

• average energy loss,  $o_E$ 

$$\delta_E \approx 1.20 \left[ \frac{\alpha^2 \sigma_z \Upsilon}{r_e \gamma} \right] \Upsilon$$

where functions  $U_0(\Upsilon) \simeq 1/(1 + \Upsilon^{2/3})^{1/2}$  and  $U_1(\Upsilon) \simeq 1/(1 + 1.5\Upsilon^{2/3})^2$ 

- $\Upsilon \ll \mathbf{1} \longrightarrow U_0 \text{ and } U_1 \sim 1$
- The average photon energy,  $<\omega>$

$$\frac{<\omega>}{E_{beam}} \simeq 0.46\Upsilon$$

• to keep  $n_{\gamma} \sim 1$  and  $\delta_E$  on the level of few percent  $[\alpha^2 \sigma_z \Upsilon/r_e \gamma] \sim 1$ 

for proposed ILC is equal to  $\simeq 0.6$ .

- $n_{\gamma} \simeq 1.6$  per electron.
- $\delta_E \sim 4\%$ .
- $<\omega>\approx$  2.3%  $E_{beam}$
- $R \sim 100 \longrightarrow \delta_E$  independent of  $\sigma_y$
- $\Upsilon \sim 1/(\sigma_x + \sigma_y)$  by decreasing  $\sigma_y$  one can increase the luminosity and in the same time to leave the energy loss without change.