present understanding

Ronen Ingbir

llaboration precision design Tel Aviv University HEP Experimental Group

Outline

High statistics MC, Fast simulation

Design optimization (GEANT) :

- 1. Granularity and reconstruction algorithm (Log. Weighting).
- 2. Electronics channels (Maximum peak shower design).

Present understanding design (head on ILC, Crossing angle).

Method of counting Bhabha events

Summary

Fast Detector Simulation

Motivation :

High statistics is required to notice precision of : $\frac{\Delta L}{L} \cong 10^{-4}$ (Which is the precision goal of the ILC)

Luminosity precision determination :

laboration

There is an analytic calculation (and approximation): $\frac{\Delta L}{L} \approx \frac{2^* \Delta \theta}{\theta}$

- N₁: Reconstructed and generated in acceptance region.
- N₂ : Generated in acceptance region but reconstructed outside.
- N₃ : Generated outside acceptance region but reconstructed inside.

 $\frac{\Delta L}{L} = \frac{N_3 - N_2}{N_1 + N_2}$

High Statistics Simulation

ollaboration sh precision design

High Statistics Simulation

Changing the detector resolution with no bias

ollaboration sh precision design

Data and MC

In real life we can include the detector performance (which is measured in test beam) into MC. The only question is: **How well should we know the detector performance ?**

Logarithmic Weighting

Granularity in theta, GEANT results

Maximum Peak Shower Design

Our basic detector is designed with

30 rings * **24** sectors * **15** cylinders = 10,800 channels

Do we use these channels in the most effective way ?

24 sectors * **15** rings * (10 cylinders + 20 cylinders) = 10,800 channels

ollaboration

recision design

Polar Reconstruction

without changing the number of Other properties

Tel-Aviv Sep.05

10

ollaboration gh precision design

Present Understanding (pad option)

10 cylinders	(θ)
--------------	-----

60 cylinders (θ)

Based on optimizing theta measurement

Parameter	Opal	LumiCal
Distance from the IP	± 2.5 m	± 3.05 m
Sampling layers	19	30
Cylinders	32	60 (middle layers),
		10 (first and last layers)
Sectors	32	24
Pitch in r (mm)	2.5	3.3 (middle layers),
		20 (first and last layers)
Pitch in θ (rad)	0.001	0.001 (middle layers),
		0.006 (first and last layers)
Pitch in ϕ (deg)	11.25	15
Pitch in z	1 X ₀	1 X ₀
	$2 X_0$ (last 4 layers)	
r_{min} (mm)	62	80
$r_{max} (mm)$	142	280
θ_{min} (mrad)	25	26
θ_{max} (IIII au)	57	91
$Z_{max} - Z_{min} \ (\mathrm{cm})$	14	20
Electronics channels	19,456	25,200
in one detector arm		

Beamstrahlung pair background

Tel-Aviv Sep.05

Method of counting events

Maximum peak shower design and logarithmic weighting : working with a constant (Beam energy and cells size dependents) + applying differential weighting between the parts.

Applying tight acceptance cut on one detector arm.

Applying a looser acceptance cut on the second detector arm.

Count events which satisfy the back to back requirement using a band cut.

Repeat method for the other side of the detector and compare results.

Tel-Aviv Sei

Tight cut

Performance of present configuration

Parameter	Pad Performance
Energy resolution	25%
θ resolution	3.5 * 10 ⁻⁵ (rad)
ϕ resolution	0.63 (deg)
$\Delta heta$	~ 1.5 * 10 ⁻⁶ (rad)
Electronics	25,200
channels	~19,000 (X-angle)

With this performance the $\Delta L / L = 10^{-4}$ goal can be reached.

ollaboration

Next (and immediate) steps

Taking the present understanding design as a basis design for future simulation.

Understanding the criteria for identifying and selecting Bhabha event (maybe better detector resolutions are necessary).

Testing the crossing angle recommendation design in a crossing angle Bhabha scattering simulation which includes serpentine magnetic field.

