Comparison of BeamCal performance at Different ILC Designs (Current Study Status)

Vladimir Drugakov NC PHEP, Minsk / LAL, Orsay

Physics motivation:

– in some models, amount of DM in the Universe depends on difference between $\tilde{\chi}$ and $\tilde{\tau}_{_1}$ masses

-> one needs to measure $\tilde{\tau}$ mass precisely

Physics motivation:

- in some models, amount of DM in the Universe depends on difference between $\tilde{\chi}$ and $\tilde{\tau}_{_1}$ masses

-> one needs to measure $\tilde{\tau}$ mass precisely

Physics background:

- $\gamma\gamma$ events with 4-fermion final states
- eliminating strategy:
 - cut on $\tau\tau$ acoplanarity if $p_{t}(e)$ is low
 - electron veto when $p_{+}(e)$ is high

New Particle Searches

The Physics: stau pair production Signature: $\tau^+ \tau^-$ + missing energy

The Background: two-photon events Signature: $\tau^+ \tau^- +$ missing energy (if electrons are not tagged)

i.e. mimic SUSY event

strategy:

- e^+e^- in BP: cut on $\tau\tau$ acoplanarity
- e hits BeamCal: electron veto is vital

Physics motivation:

- in some models, amount of DM in the Universe depends on difference between $\tilde{\chi}$ and $\tilde{\tau}_{_1}$ masses

-> one needs to measure $\tilde{\tau}$ mass precisely

Physics background:

- $\gamma\gamma$ events with 4-fermion final states
- eliminating strategy:
 - cut on $\tau\tau$ acoplanarity if $p_{_+}(e)$ is low
 - electron veto when $p_{+}(e)$ is high

Electron veto:

- problematic near BP, due to superposition with the beamstrahlung remnants

Beamstrahlung remnants. Pairs

BeamCal will be hit by beamstrahlung remnants carrying about 20 TeV of energy per bunch crossing.

Veto requirements and performance

the electrons from $\gamma\gamma$ events passed all cut except veto

BeamCal veto performance

Physics motivation:

- in some models, amount of DM in the Universe depends on difference between $\tilde{\chi}$ and $\tilde{\tau}_{_1}$ masses

-> one needs to measure $\tilde{\tau}$ mass precisely

Physics background:

- $\gamma\gamma$ events with 4-fermion final states
- eliminating strategy:
 - cut on $\tau\tau$ acoplanarity if $p_{_+}(e)$ is low
 - electron veto when $p_{+}(e)$ is high

Electron veto:

- problematic near BP, due to superposition with the beamstrahlung remnants

Study:

- S/N is benchmark in comparison of different designs

Strategy

Physics program:

- head-on vs. 20 mrad X-angle

Strategy

Physics program:

- head-on vs. 20 mrad X-angle
- compare different beam parameter sets
- ("Suggested ILC Beam Parameter Range" Rev. 2/28/05)

Beam Parameter Sets

Strategy

Physics program:

- head-on vs. 20 mrad X-angle
- compare different beam parameter sets

Strategy:

calculate veto efficiency table for each design
full simulation chain to be done for each design
include this MC into stau analysis
(to be done by LAL group)

Simulation Features

- "nominal" beam parameter set
- tracking: GEANT4 instead of GEANT3
 - -> more **powerfull** tool
 - -> more flexible
 - -> much faster
- geometry:
 - head-on: R_{min}=15mm; X-angle: R_{min}=20mm
 - blind area: -15 degree < ϕ < 15 degree; this blind area is excluded from the efficiency calculation
- pairs from **500BX** are simulated for head-on and X-angle
- **algorithm** tuned with common energy threshold and fake rate (5%) for head-on and 20 mrad (may not be fully optimal)
- efficiency calculation: per ring instead of per cell
 -> smaller statistical error

Summary and Outlook

- new veto efficiency functions are obtained for head-on and 20mrad crossing angle schemes
 - -> the results must be included into stau analysis
 - -> comparison of BeamCal performance

- comparison of the different beam parameter sets in similar manner is on the way