On Readout Electronics

Facing the challenges:

- 5 bunch trains per second (5 Hz)
- 3000 bunches within one train
- one bunch every 300 ns , 150 ns possible
- each bunch to be registered
- high dynamic range (better 1:10k)
- more than 10 k channels, depending on design
- Fast, low power, rad hardness to be considered

On Readout Electronics

Basic Concepts:

- charge sensitive frontend

- current sensitive frontend

On Readout Electronics

Dynamic Range:

- operation with two (more) scales:

On Readout Electronics

Analog or Digital Storage:

- 3000 bunches within one train
- one bunch every $300 \mathrm{~ns}, 150 \mathrm{~ns}$ possible
\rightarrow analog storage nearly impossible (depth, decay of charge, switching noise)
\rightarrow Digitization with ADC, staggering?

On Readout Electronics

Power Consumption:

- more than 10k channels, depending on design
\rightarrow power cycling:
Low current: $-0.5 \mathrm{~V} \quad 100 \mathrm{nA}$
Hi current : $-0.85 \mathrm{~V} \quad 500 \mu \mathrm{~A}$

PICTURE: CH. DE LA TAILLE

ILC FCAL WORKSHOP • Tel Aviv University • 19-September-2005 • W. Lange

On Readout Electronics

The Way To Go:

- Integrated solution after testing concepts

On Readout Electronics

The Price To Be Payed:

- About 5 man-years + (electronics engineer)
- Several chip submissions (collaboration?)
- And, and, and

On Readout Electronics

Next Steps:

- Investigation of preamp principles
- Feasibility studies of digitization
- Investigation of known r/o systems (FLC Calice (Orsay))
- developing and refining of building blocks

