LumiCal displacement measurement present status

Wojciech Wierba INP PAS
Jerzy Zachorowski UJ
Wojciech Słomiński UJ
Leszek Zawiejski INP PAS
Krzysztof Oliwa INP PAS

Previous results

- He-Ne Laser
- Cheap web camera with unknown pixel size
- Old movable table with low precision micrometric screw
- Report can be foud:
 http://www.ifj.edu.pl/reports/1931.pdf?lang=pl

Simple laser – CCD camera position measurements

Resolution 1µm if the accuracy of determination of the centre of the light spot is better than 0.1pixel

New setup — single laser beam

- BW camera DX1-1394a from Kappa company 640 x 480 with Sony ICX424AL sensor 7.4 μm x 7.4 μm unit cell size
- Laser module LDM635/1LT from Roithner Lasertechnik
- ThorLabs ½" travel translation stage MT3 with micrometers (smallest div. 10 μm)
- Neutral density filters ND2

Single beam setup layout

Single beam spot

Laser beam spot and corresponding histogram

Single beam measurement results

Camera has been translated in 50 μ m \pm 2 μ m (estimated) steps

Pattern generator

- Laser modul with pattern generator
- Need to use the lenses to focus the grid on CCD sensor
- Simple lens = distorsion (coma)
- We have skipped this solution for future investigations because of sophisticated optical system need

Pictures with pattern generator

Single lens ~20mm FL on laser

Factory lenses 6 mm FL on camera

XYZ displacement mesurement with two beams

Two laser beams (one not perpendicular to the sensor) allows us to measure XYZ translation in one sensor

Setup with two beams

Z translation of the camera

$$Z = 0 \mu m$$

 $Z = 250 \, \mu m$

Z = 500 μm

 $Z = 750 \, \mu \text{m}$

 $Z = 1000 \mu m$

 $Z = 1250 \mu m$

 $Z = 1500 \mu m$

X and Y position are constant

The angle between two beams is ~30°

Conclusions

- The XY position measurement method with single beam has the accuracy better than a few mikrometers
- The XYZ position measurement with two beams looks promising, but to determine the center of two spots a new algorithm has to be developed
- The XYZ Position measurement with a pattern generator needs a sophisticated optics and probably will be expensive

Next steps

- Solid state diode pumped laser better spot
- LED with collimator instead of laser?
- Beam spliter with halftransparent mirror
- Algorithm to determine centre of two spots
- Discussion on possible errors
- More compact prototype
- Independent measurement of XYZ translations
- Stability tests