Referee report on the $\tau\tau$ benchmark (by Keita Yumino and Daniel Jeans)

Mikael Berggren¹

¹DESY, Hamburg

ILD benchmarking days, KEK, February, 2019

\bullet Analysis of $e^+e^- \mathop{\rightarrow} \tau \tau$

• Physics outputs:

- Measure polarised cross-sections, A_{LR}
- au polarisation

Optimisation aspects:

- τ identification, efficiency and purity
- au decay modes, efficiency and purity
- "Polarimeter" determination
- ⇒ photon reconstruction and separation in a channel with potentially several very close photons from highly boosted π⁰(:s).
- Several presentations, by both Keita and Daniel (Arlington, SwAna phone-meeting, here on Saturday).
- Very preliminary draft of the note sent to me Feb 5.

- Analysis of $e^+e^- \rightarrow \tau \tau$
- Physics outputs:
 - Measure polarised cross-sections, A_{LR}
 - τ polarisation
- Optimisation aspects:
 - au identification, efficiency and purity
 - au decay modes, efficiency and purity
 - "Polarimeter" determination
 - ⇒ photon reconstruction and separation in a channel with potentially several very close photons from highly boosted π⁰(:s).
- Several presentations, by both Keita and Daniel (Arlington, SwAna phone-meeting, here on Saturday).
- Very preliminary draft of the note sent to me Feb 5.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Analysis of $e^+e^- \rightarrow \tau \tau$
- Physics outputs:
 - Measure polarised cross-sections, A_{LR}
 - τ polarisation
- Optimisation aspects:
 - τ identification, efficiency and purity
 - τ decay modes, efficiency and purity
 - "Polarimeter" determination
 - \Rightarrow photon reconstruction and separation in a channel with potentially several very close photons from highly boosted π^0 (:s).
- Several presentations, by both Keita and Daniel (Arlington, SwAna phone-meeting, here on Saturday).
- Very preliminary draft of the note sent to me Feb 5.

- Analysis of $e^+e^- \rightarrow \tau \tau$
- Physics outputs:
 - Measure polarised cross-sections, ALR
 - τ polarisation
- Optimisation aspects:
 - τ identification, efficiency and purity
 - τ decay modes, efficiency and purity
 - "Polarimeter" determination
 - \Rightarrow photon reconstruction and separation in a channel with potentially several very close photons from highly boosted π^0 (:s).
- Several presentations, by both Keita and Daniel (Arlington, SwAna phone-meeting, here on Saturday).
- Very preliminary draft of the note sent to me Feb 5.

Jenny's checklist: 1 - Important questions

"The most important questions raised and how they were addressed" Points from reading the note:

- Go through the spread-sheet, to identify what is missing:
 - Cross-section level analysis not so relevant for a high-cross-section SM channel
 - Generator level analysis in the note (and in previous presentations). Just need plots in ILD-style.
 - Reco level: My remarks-suggestions has already been addressed in Daniel's talks since:
 - Cut-flow grouping backgrounds after the numbers of rcs (24X) some rcs (-4.2), no rcs)
 - Pions of experimentation of (corrector), the cut-variables (needs ILD style)
 - Eff/purity matrix for decay-modes (large/small))

Jenny's checklist: 1 - Important questions

"The most important questions raised and how they were addressed" Points from reading the note:

- Go through the spread-sheet, to identify what is missing:
 - Cross-section level analysis not so relevant for a high-cross-section SM channel
 - Generator level analysis in the note (and in previous presentations). Just need plots in ILD-style.
 - Reco level: My remarks-suggestions has already been addressed in Daniel's talks since:
 - Cut-flow grouping backgrounds after the numbers of τ :s (2+X , some τ :s (\neq 2), no τ :s)
 - Plots of signal and backgrounds of (some of) the cut-variables (needs ILD style)
 - Eff/purity matrix for decay-modes (large/small)

Jenny's checklist: 1 - Important questions, cont'd

• More from the spread-sheet

- What "cheating" might be useful?
 - re effirment stoejdo nees toeles of encorto beetsni DM esu opniteedo re e
 - Chost photons: replace photons seen in the cone by the values.
 - \circ . Cheat decay-modes: Use seen values of true ho or all decay-products.
- We've discussed these points over coffee.

• Other comments

- Neutral hadronic clusters: Do you check if the E_{calo}/p_{track} gets better if you add such neutral clusters to the closest charged cluster?
- For the *τ*-decay mode, in the *π* + *γ*(:s) case, do you check if the mass matches the *ρ*? Or maybe rather the *a*₁? (Done in Daniel's talk Saturday)
- What is distilledPFOs actually used for ? (Nothing, really. Probably just use PandoraPFOs)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Jenny's checklist: 1 - Important questions, cont'd

More from the spread-sheet

- What "cheating" might be useful?
 - au cheating: use MC instead of cone to select seen objects from the au
 - Cheat photons: replace photons seen in the cone by true values
 - Cheat decay-modes: Use seen values of true ρ or a_1 decay-products.
- We've discussed these points over coffee.

Other comments

- Neutral hadronic clusters: Do you check if the E_{calo}/p_{track} gets better if you add such neutral clusters to the closest charged cluster?
- For the *τ*-decay mode, in the *π* + *γ*(:s) case, do you check if the mass matches the *ρ*? Or maybe rather the *a*₁? (Done in Daniel's talk Saturday)
- What is distilledPFOs actually used for ? (Nothing, really. Probably just use PandoraPFOs)

Jenny's checklist: 1 - Important questions, cont'd

• More from the spread-sheet

- What "cheating" might be useful?
 - au cheating: use MC instead of cone to select seen objects from the au
 - Cheat photons: replace photons seen in the cone by true values
 - Cheat decay-modes: Use seen values of true ρ or a_1 decay-products.
- We've discussed these points over coffee.

Other comments

- Neutral hadronic clusters: Do you check if the E_{calo}/p_{track} gets better if you add such neutral clusters to the closest charged cluster?
- For the *τ*-decay mode, in the *π* + *γ*(:s) case, do you check if the mass matches the *ρ*? Or maybe rather the *a*₁? (Done in Daniel's talk Saturday)
- What is distilledPFOs actually used for ? (Nothing, really. Probably just use PandoraPFOs)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Jenny's checklist: 2 - Status of analysis

"Your general assessment of the status of the analysis"

- well advanced, but need to identify and focus on the aspects for the IDR.
- A number of questions has come up where a more detailed check of why we see what we see.
 - Why do we not see as many photons as we should?
 - why do we see neutral hadrons, when there should be none?
 - what are the extra true photons?
 - why does the π^0 reconstruction not better than it is?
- I had fruitful discussions with Daniel the last days in how to attack these issues
- On the π⁰:s: Noted that the "DistiledPFOs" doesn't really do the trick in this topology, and conclude to use normal PFOs instead, and drop this issue as a bench-marking output. It is a full topics of it's own, and there isn't enough time/manpower for it

Jenny's checklist: 2 - Status of analysis

"Your general assessment of the status of the analysis"

- well advanced, but need to identify and focus on the aspects for the IDR.
- A number of questions has come up where a more detailed check of why we see what we see.
 - Why do we not see as many photons as we should?
 - why do we see neutral hadrons, when there should be none?
 - what are the extra true photons?
 - why does the π^0 reconstruction not better than it is?
- I had fruitful discussions with Daniel the last days in how to attack these issues
- On the π⁰:s: Noted that the "DistiledPFOs" doesn't really do the trick in this topology, and conclude to use normal PFOs instead, and drop this issue as a bench-marking output. It is a full topics of it's own, and there isn't enough time/manpower for it

Jenny's checklist: 2 - Status of analysis

"Your general assessment of the status of the analysis"

- well advanced, but need to identify and focus on the aspects for the IDR.
- A number of questions has come up where a more detailed check of why we see what we see.
 - Why do we not see as many photons as we should?
 - why do we see neutral hadrons, when there should be none?
 - what are the extra true photons?
 - why does the π^0 reconstruction not better than it is?
- I had fruitful discussions with Daniel the last days in how to attack these issues
- On the π^0 :s: Noted that the "DistiledPFOs" doesn't really do the trick in this topology, and conclude to use normal PFOs instead, and drop this issue as a bench-marking output. It is a full topics of it's own, and there isn't enough time/manpower for it

Jenny's checklist: 3 - Status of the note

"Your general assessment of the status of the note"

- Currently rather sketchy, and mainly contains plots on generator level, cut-flow table to be updated.
- But newer plots and tables already shown in presentations.
- Please update the note with this! (and in ILD style)

Jenny's checklist: 3 - Status of the note

"Your general assessment of the status of the note"

- Currently rather sketchy, and mainly contains plots on generator level, cut-flow table to be updated.
- But newer plots and tables already shown in presentations.
- Please update the note with this! (and in ILD style)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Jenny's checklist: 4 - Status of the note

"The selection of material for the IDR"

- Number of found photons vs true number in the cone, and energy of same
- eff/purity of τ -selection, as a table.
- eff/purity of decay-modes: matrix for small/low
- Polarimeter reco true/seen large/small
- and maybe
 - π^0 reco, if more interesting than now.
 - total cross-section and A_{FB}, but unlikely to show any large/small differences

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Jenny's checklist: 4 - Status of the note

"The selection of material for the IDR"

- Number of found photons vs true number in the cone, and energy of same
- eff/purity of τ -selection, as a table.
- eff/purity of decay-modes: matrix for small/low
- Polarimeter reco true/seen large/small
- and maybe
 - π^0 reco, if more interesting than now.
 - total cross-section and A_{FB}, but unlikely to show any large/small differences

Jenny's checklist: 5 - Remaining Issues

"Remaining points to be addressed before material can be included in the ID"

Was mostly discussed along this talk:

- Figure out the "why:s", mainly by cheating aspects and/or checking true information.
- Not only number of photons, but also photon energy.
- Some more work needed to extract the polarimeters in the best way. (We had some interesting exchanges on this the last days)