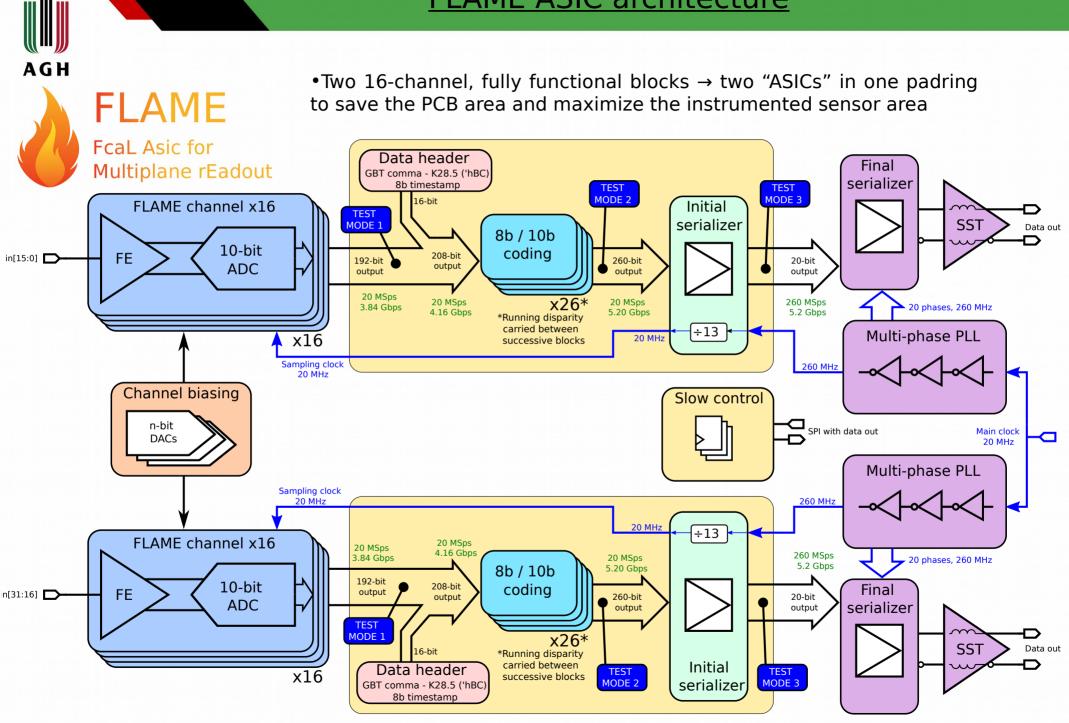


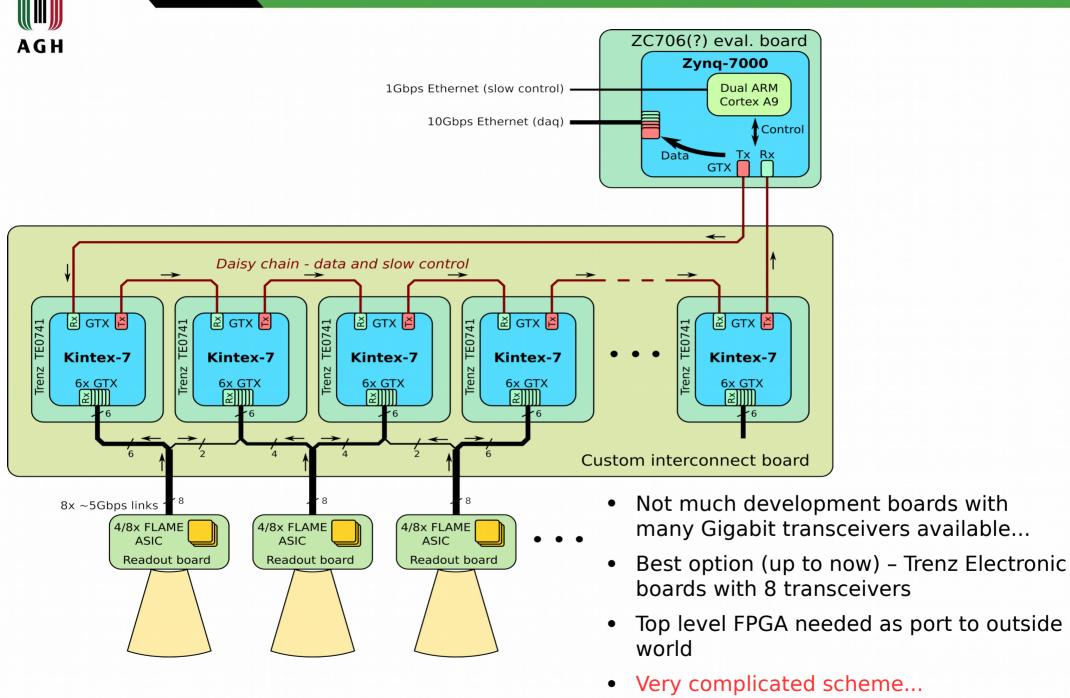
FireDAQ for FLAME – architecture and hardware considerations

Jakub Moroń

AGH University of Science and Technology, Krakow, Poland

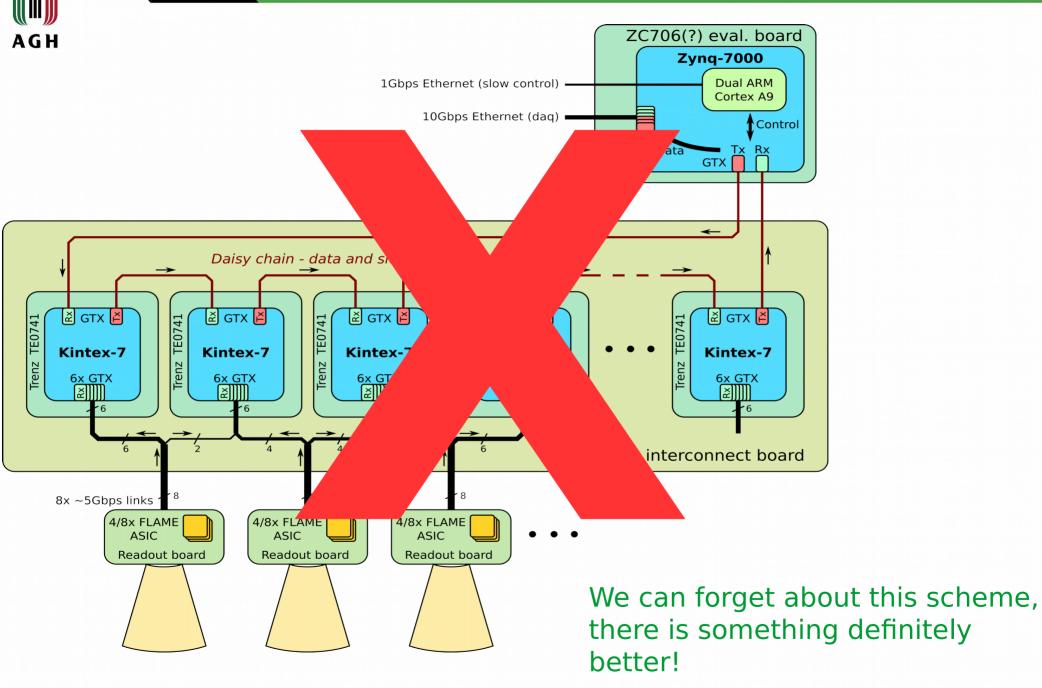


Outline



- New readout scheme
 - New Trenz Electronic module with Zynq UltraScale+
- FPGA firmware details
- System bandwidth (maximal event rate)
- Work to be done (and by whom...)

FLAME ASIC architecture



Old DAQ architecture

Old DAQ architecture

Trenz Electronic TE0808 modules

Prices plus VAT plus shipping costs

expected to be available on 24-Nov-2018

Description

Downloads

Resources

Product information "UltraSOM+ MPSoC Module with Zynq UltraScale+ XCZU9EG-1FFVC900E, 4 GB DDR4"

The Trenz Electronic TE0808-04-09EG-1EE is a MPSoC module integrating a Xilinx Zynq UltraScale+ ZU9EG, 4 GByte DDR4 SDRAM with 64-Bit width, 128 MByte Flash memory for configuration and operation, 20 Gigabit transceivers, and powerful switch-mode power supplies for all on-board voltages. A large number of configurable I/O's is provided via rugged high-speed stacking connections.

All parts are at least extended temperature range of 0°C to +85°C. The module operating temperature range depends on customer design and cooling solution. Please contact us for options.

All this on a tiny footprint of 5.2 x 7.6 cm at the most competitive price. These high-density integrated modules are smaller than a credit card and available in several variants.

Slightly shorter than the credit card

Trenz Electronic TE0808 modules

We are trying to buy two TE0808-04-09EG modules just now

Trenz board	FPGA	Price (EUR with tax)	System cells	CLB flip-flops	CLK LUTs	DSP slices	DDR4 RAM
TE0808-04-06EG-1EE	XCZU6EG-1FFVC900E	1070	469k	429k	215k	1973	4 GB
TE0808-04-09EG-1EE	XCZU9EG-1FFVC900E	1189	600k	548k	274k	2520	4 GB
TE0808-04-15EG-1EE	XCZU15EG-1FFVC900E	1605	747k	682k	341k	3528	2 GB

€899.00 (1,069.81 € gross) *

Prices plus VAT plus shipping costs

Order number:

From 1000

In Stock:

expected to be available on 29-Nov-2018

€999.00 (1,188.81 € gross) *

Prices plus VAT plus shipping costs

· Ready to ship today,

Delivery time appr. 1-3 workdays

€1,349.00 (1,605.31 € gross) *

Prices plus VAT plus shipping costs

expected to be available on 31-Jan-2019

1	~	Add to shopping ca						
▼ Remember								

TE0808-04-06EG-1EE

Remember

Add to shopping car

1

Add to shopp

Order number: In Stock:

TE0808-04-09EG-1EE 7

Order number: In Stock:

Remember

TE0808-04-15EG-1EE

Quantity	Unit price
To 9	€899.00 (1,069.81 € gross) *
From 10	€809.10 (962.83 € gross) *
From 25	€791.12 (941.43 € gross) *
From 50	€764.15 (909.34 € gross) *
From 100	€737.18 (877.24 € gross) *
From 250	€719.20 (855.85 € gross) *
From 500	€674.25 (802.36 € gross) *

Unit price
€999.00 (1,188.81 € gross) *
€899.10 (1,069.93 € gross) *
€879.12 (1,046.15 € gross) *
€849.15 (1,010.49 € gross) *
€819.18 (974.82 € gross) *
€799.20 (951.05 € gross) *
€749.25 (891.61 € gross) *
€699.30 (832.17 € gross) *

Quantity	Unit price							
To 9	€1,349.00 (1,605.31 € gross) *							
From 10	€1,214.10 (1,444.78 € gross) *							
From 25	€1,146.65 (1,364.51 € gross) *							
From 50	€1,079.20 (1,284.25 € gross) *							
From 100	€1,011.75 (1,203.98 € gross) *							
From 250	€944.30 (1,123.72 € gross) *							
From 500	€876.85 (1,043.45 € gross) *							
From 1000	€809.40 (963.19 € gross) *							

€629.30 (748.87 € gross) *

Trenz TE080X baseboard for developement

UltraITX+ Baseboard for Trenz Electronic TE080X UltraSOM+

This could be very helpful, we are trying to buy one just now

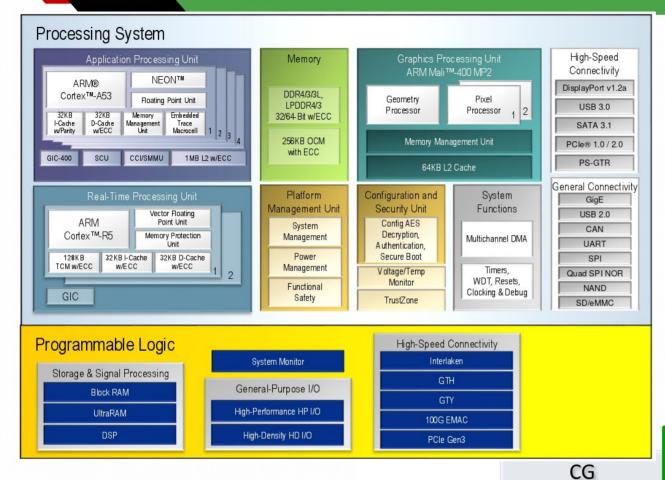
€799.00 (950.81 € gross) * Prices plus VAT plus shipping costs expected to be available on 07-Dec-2018 Add to shopping cart 1 Remember Order number: TEBF0808-04 In Stock: 0 Quantity Unit price To 9 €799.00 (950.81 € gross) * From 10 €719.10 (855.73 € gross) * From 25 €679.15 (808.19 € gross) * From 50 €639.20 (760.65 € gross) * €599.25 (713.11 € gross) * From 100 From 250 €559.30 (665.57 € gross) *

€519.35 (618.03 € gross) *

€479.40 (570.49 € gross) *

Description Downloads Resources

Product information "UltraITX+ Baseboard for Trenz Electronic TE080X UltraSOM+"


The Trenz Electronic TEBF0808 carrier board is a baseboard for the Xilinx Zynq Ultrascale+ MPSoC modules TE0803, TE0807 und TE0808, which exposes the module's B2B connector pins to accessible connectors and provides a whole range of on-board components to test and evaluate the Zynq Ultrascale+ SoMs and for developing purposes. The carrier board has a Mini-ITX form factor making it capable to be fitted into a PC enclosure. On the PC enclosure's rear and front panel, MGT interfaces and connectors are accessible, for the front panel elements there are also Intel-PC compatible headers available.

From 500

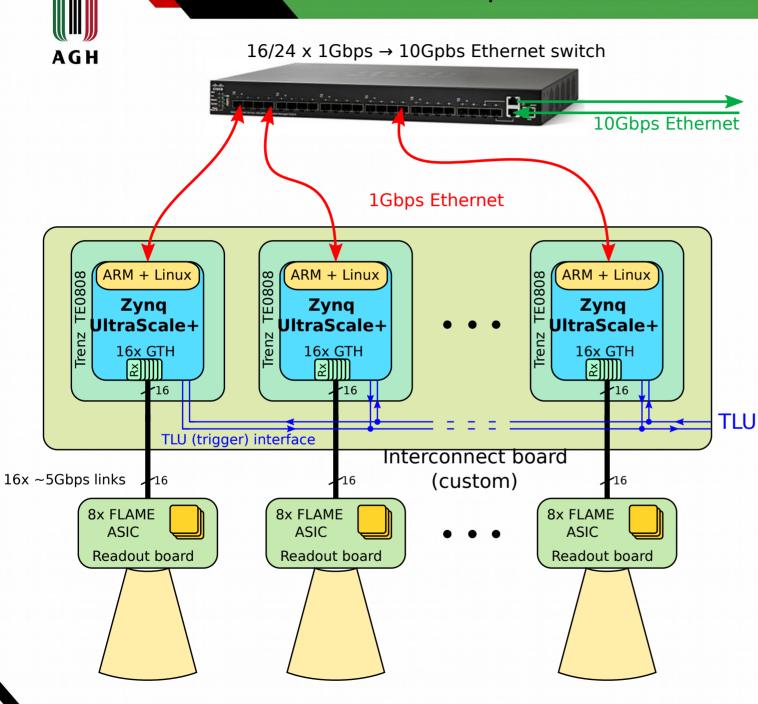
From 1000

Zynq UltraScale+ Family

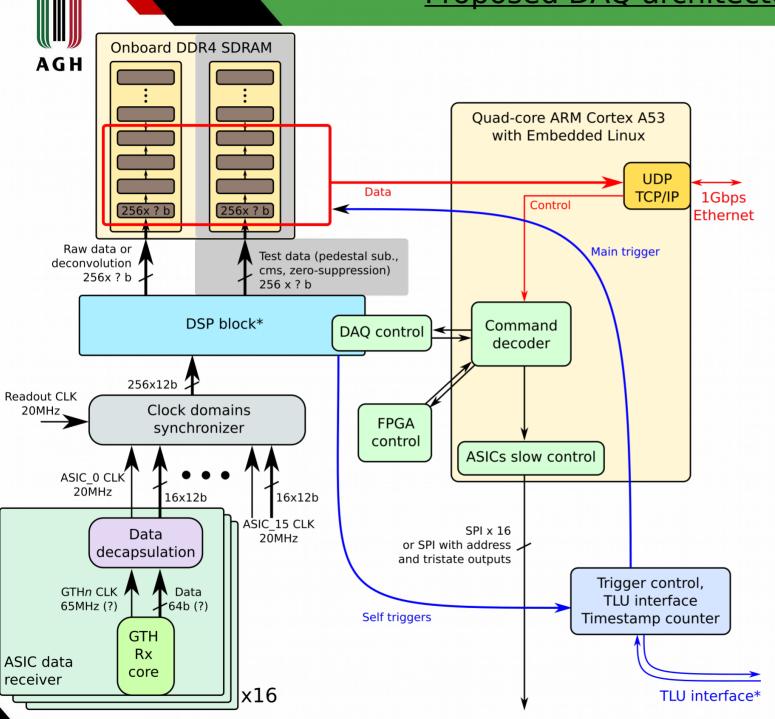
Zynq UltraScale+ MPSoC
Product Tables and Product Selection Guide

	Devices
Application Processor	Dual -core ARM® Cortex [™] -A53 MPCore [™] up to 1.3GHz
Real-Time Processor	Dual-core ARM Cortex-R5 MPCore up to 533MHz
Graphics Processor	
Video Codec	
Programmable Logic	103K–600K System Logic Cells

FV EG Devices **Devices** Quad-core ARM Cortex-A53 Quad-core ARM Cortex-A53 MPCore up to 1.5GHz MPCore up to 1.5GHz Dual-core ARM Cortex-R5 Dual-core ARM Cortex-R5 MPCore up to 600MHz MPCore up to 600MHz Mali™-400 MP2 Mali™-400 MP2 H.264 / H.265 103K-1143K System Logic Cells 192K-504K System Logic Cells

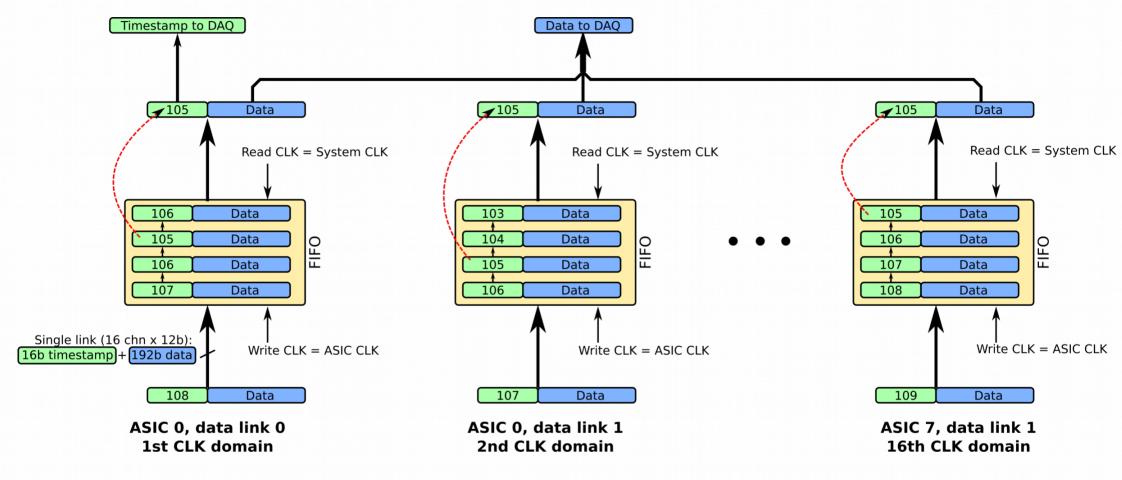


Zynq® UltraScale+™ MPSoCs: EG Devices

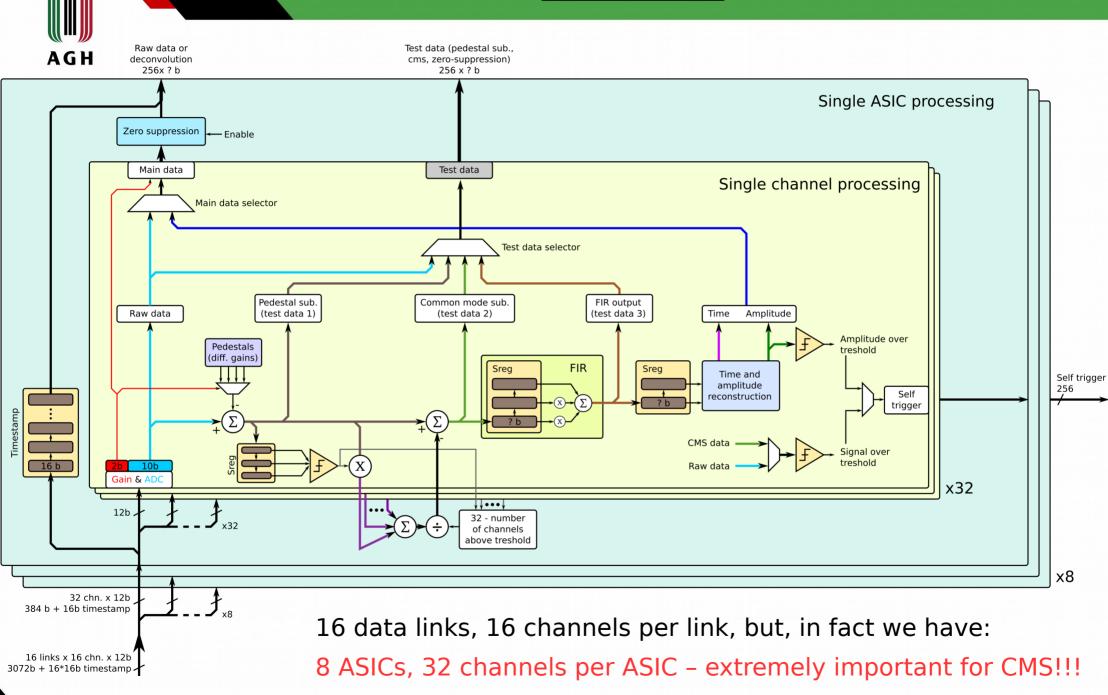

,												
	Device Name ^(L)	ZU2EG	ZU3EG	ZU4EG	ZU5 EG	ZU6EG	ZU7EG	ZU9EG	ZU11EG	ZU15EG	ZU17EG	Z U1 9
Application	Processor Core			-			ex™-A53 l					
Processor Unit	Memory w/ECC		L1				L2 Cache				KB	
Real-Time	Processor Core			Du	ıal-core A	ARM Cort	ex-R5 MP	Core™ up	to 600N	l Hz		
Processor Unit	Memory w/ECC		L1 (Cache 32			ightly Co	-		3KB per o	ore	
Graphic & Video	Graphics Processing Unit				N	1ali™-400	MP2 up	to 66 7 M F	Z			
Acceleration	Memory					L2	Cache 64	KB				
Connectivity Connectivity Connectivity	Dynamic Memory Interface			x32/x	64: DDR4	, LPDDR4	, DDR3, D	DR3 L, LP	DDR3 wi	th ECC		
	Static Memory Interfaces					NAN	D, 2x Qua	d-SPI				
Connoctivity	High-Speed Connectivity		PCle® G	en2 x4, 2	x USB3.0	, SATA 3	1, Display	Port, 4x	ri-mode	Gigabit E	thernet	
Connectivity	General Connectivity		2xUSB	2.0, 2x S	D/SDIO,	2x UART	2x CAN 2	2.0B, 2x I	2C, 2xS	PI, 4x 32l	GPIO	
	Power Management				Full / I	Low / PL	Battery	Power Do	mains			
Integrated Block Functionality	Security					RSA	AES, and	SHA				
Functionality	AMS - System Monitor			1 0	-bit, 1MS	PS – Tem	perature	and Volta	ge Mon	tor		
to PL Interface						1 2 x 32,	6 4/128b .	AXI Ports				
Programmable	System Logic Cells (K)	1 03	154	192	256	469	504	600	653	747	926	1,1
Functionality	CLB Flip-Flops (K)	94	141	17 6	234	429	4 6 1	548	597	682	847	1,0
runctionality	CLB LUTs (K)	47	71	88	117	215	230	274	299	341	423	52
	Max. Distributed RAM (Mb)	1.2	1.8	2.6	3.5	6.9	6.2	8.8	9. 1	11 .3	8.0	9.
Memory	Total Block RAM (Mb)	5.3	7 .6	4.5	5.1	25.1	11 .0	32. 1	21.1	26.2	28.0	34
Clocking	UltraRAM (Mb)	-	-	1 3.5	18 .0	-	27 .0	-	22.5	3 1 .5	28.7	36
Clocking	Clock Management Tiles (CMTs)	3	3	4	4	4	8	4	8	4	11	1
	DSP Slices	240	360	728	1,248	1, 9 7 3	1,728	2,520	2,928	3,528	1, 590	1, 9
	PCI Express® Gen 3x16	-	-	2	2	-	2	-	4	-	4	į
Integrated IP	150G Interlaken	-	-	-	-	-	-	-	1	-	2	4
Integrated IP	100G Ethernet MAC/PCS w/RS-FEC	-	-	-	-	-	-	-	2	-	2	4
	AMS - System Monitor	1	1	1	1	1	1	1	1	1	1	1
Transceivers	GTH 16.3Gb/s Transceivers	-	-	1 6	1 6	24	24	24	32	24	44	4
Transceivers	GTY 32.75Gb/s Transceivers	-	-	-	-	-	-	-	1 6	-	28	2
Speed Grades	Extended ⁽²⁾	-1 -2	2 -2L		-1 -2	-2L -3			-	2 -2L -	3	
Specu Grades	Industrial						-1 -1L -2					
							1070	1189		1605	EUR	

Proposed DAQ architecture

- 8 FLAME ASICs / plane = 256 channels = 16 data links (2 links per ASIC)
- New Trenz Electronic modules with Zynq UltraScale+ FPGAs available from the end of this year.
- 16 GTH transceivers / FPGA = 1 FPGA / plane
- Integrated ARM +
 embedded linux =
 1Gbps Ethernet "for
 free"
- Simple Ethernet switch used as data concentrator
- One drawback TLU (trigger) interface and timestamp synchronization not so straightforward...


Proposed DAQ architecture

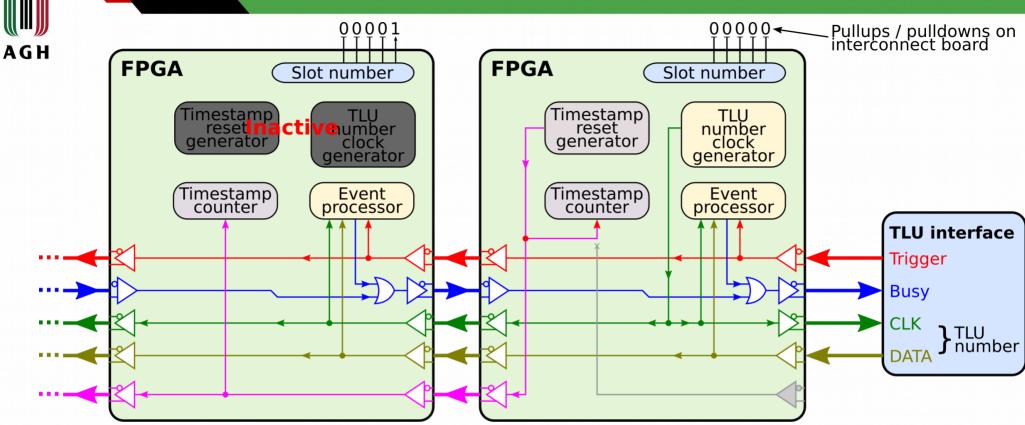
- Data from 8 ASICs (16 links) received by GTH transceivers and decapsulated
- Clock domains (16 receivers = 16 domains) synchronized with main CLK (see next)
- DSP (pedestal, cm subtraction, FIR, deconvolution, ZS)
- Data feed by FPGA logic into onboard RAM
- On trigger data read out by ARM and send out through 1 Gbps ethernet
- DAQ and ASICs slow control – by software on ARM (linux)


Clock domains synchronizer

- Clock domains synchronizer combines samples with the same timestamp and synchronizes clock phases
- If one ASIC / data link is dead, the synchronizer should build incomplete sample and inform DAQ that one data channel is missing and should not be processed, especially in cms procedure

DSP scheme

DSP simulations software

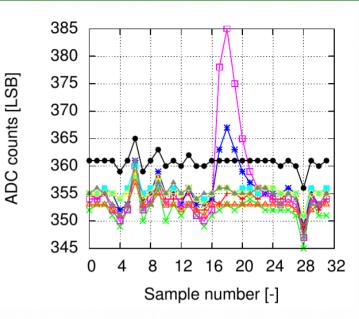

Python-based software simulating whole ASIC and DAQ chain is almost done:

- FLAME data generator is done
 - Generates "real" data pedestal with noise, randomly distributed CM disturbances and randomly generated CR-RC pulses
- DAQ based on real binary fixed point arithmetic (with overflow supervision) is done
 - Pedestal subtraction
 - Signal detection for CMS (this is a little tricky...)
 - Common mode subtraction (CMS)
 - FIR (deconvolution filter)
 - Signal detection in FIR output samples for amplitude reconstruction (gives also zero suppression)
 - Amplitude and time reconstruction
- Verification class work in progress
- Simulations of complete chain to determinate required fixed point resolution – not done
- We should schedule additional meeting for DSP details...

```
# detected_pulses: list of samples recognized as signal (pulse), generated by "detect_pulses"
                           Allows to detect common mode disturbances by checking if common mode calculated for given sample is above "threshold".
                            * if None, the verification cm_injections list is not build
# Returns tuple (event, cm_injections) where
# *cm_injections is a list of detected common mode disturbances build as follows:
# [ (cm_disturbance_occurence_sample_number,_disturbance_amplitude_[float_ADC_codes])
  ef cms(self,event,detected_pulses,threshold=None)
  cms_ave=self.new_bfpr(0.,self.cms_average_PREC)
  chns=len(event)
cm injections=[]
   for smp in range(len(event[0])):
     cms ave.assign(O.)
    for chn in range(chns):

if not smp in detected pulses[chn]:
          cms_ave=cms_ave+event[chn][smp]
       cms_ave=cms_ave/n
for chn in range(chns):
       » event[chn][smp]=event[chn][smp]-cms_ave
if not threshold is None:
           if cms ave>threshold:
             cm injections.append((smp,float(cms ave)))
   return (event,cm_injections)
                  This method searches for samples above threshold of the samples in any of threshold[i]-length sequences are above threshold[o] threshold[i]-length sequences are above threshold[o] threshold[i]-length sequences are build around tested sample in order to cover all possible combinations: from [sample no. + threshold[i] + 1 : sample no.] to [sample no. : sample no. + threshold[i] - 1]
   Returns pulses tuple build as follows:
[ [chn0 sample above threshold index, chn0 next sample above threshold index,
[chn1 sample above threshold index, chn1 next sample above threshold index,
def detect_pulses(self,event,threshold):
  smps=len(event[0])
chns=len(event)
   # In all above comments, the smp_shift=2 assumption is done!
      # Compare each sample with threshold and build "compare" list with boolean values
     compare=[False]*smp_shift+[x>threshold[0] for x in event[chn]]+[False]*smp_shift
     # Check all samples; range 2->smps+2 because 2 dummy samples are added on the begi
for smp in range(smp_shift,smps+smp_shift);
       signal=False
# Check id sample is above threshold
       # Cincert to sample is above timeshold if compare[smp]:
if compare[smp]:
# If so, check combinations: (smp-2 & smp-1 & smp) | (smp-1 & smp & smp+1) | (smp & smp+1 & smp+2) |
* * for j in range(-smp_shift,1):
              signal |= all(compare[smp+j:smp+j+smp_shift+1])
           pulses[chn].append(smp-smp_shift)
```

<u>TLU interface idea</u>


- Since LVDS/CML standard is used for TLU signals, FPGA inputs cannot be connected in parallel. Solution: pass
 (wire) through each FPGA with conversion CML → single ended (inside FPGA) → CML
- Trigger and TLU number data passed to all FPGAs; busy ORed inside each FPGA with busy signal from previous
- FPGA in slot **0** responsible for generating the TLU number read clock → distributed to TLU and all other FPGAs
- FPGA in slot **0** responsible for generating timestamp reset signal (on demand from DAQ control software)
- Timestamp reset and TLU number clock generators inactive in all FPGAs with slot number != 0
- Slots numbered by combination of pullups / pulldowns on interconnect board
- Exactly the same firmware in each FPGA behavior determined only by slot number → miniboards with FPGA
 can be replaced / exchanged between slots without any firmware change

System bandwidth

- Old DAQ scheme 16/32 raw ADC samples (10b) per channel per each trigger (event)
- New DAQ (with amplitude reconstruction) two 16b(?)
 values (time, amplitude) per channels per event.

 Even less with ZS, dependently on occupancy

- Assuming 32 raw samples / event, 12b data (10b ADC + 2b gain):
 - 32 × 12b × 256 channels = 12 kB / event / plane for raw data
 - 1 × 32b × 256 channels = 1 kB / event /plane for reconstruction data
- Assuming 400 Mbps as reasonable bandwidth for 1Gbps ethernet, we have
 - ~4k events per second or <49k events per second for singe plane
- Assuming 16 planes and 4 Gbps bandwidth for 10Gbps link:
 - ~2.5k events per second or ~30.5k events per second

Ethernet is not a bottleneck for DAQ

System bandwidth

The storage is a main bottleneck for DAQ

- Assuming 16 planes and 4 Gbps bandwidth for 10Gbps link:
 - ∼2.5k events per second or ~30.5k events per second
- Single HDD (WD Red) average write bandwidth ~100 MBps:
 - ~500 events per second or ~6.2k events per second <u>5 times slower!</u>
- RAID 5 (3x WD Red) average write bandwidth ~300 Mbps:

But there is one more limit...

- Assuming one week long testbeam, data collected only for 70% of the time
 - For raw data @1k events/s we will need 81 TB!!! of storage capacity
 - For reconstructed amplitudes @1k events/s only 7 TB is needed...

We cannot work with raw data!

Open questions - system size...

- DAQ will be fully and easily scalable:
 - the interconnect board can be modular: e.g. PCB for 4 FPGA modules that can connected to another interconnect board maintaining the TLU interface and synchronization chain
 - We don not have to fill all FPGA slots, the system will work even with one FPGA
 - The 16-port ethernet switch seems to have the best price to capabilities ratio; if more than 16 detector layers will be used, a second switch would be the best choise

Questions

- 1) Are we going to use this DAQ only for AIDA2020 (one testbeam), or also for future developments?
- 2) How many layers are we going to use in testbeam next year?
 - a) Especially how many FPGA modules should we bought now?
- 3) How many layers are we going to use in the future 16 / 30 / 40?

Work status and responsibilities

Firmware

- FLAME data receiver (IFJ Krakow → ???)
 - Done, but on different FPGA have to be ported to UltraScale+ Zynq
- Clock domains synchroniser (JINR Dubna)
 - Probably done
- DSP (JINR Dubna)
 - Not started yet, waiting for software DSP model (by me)
- Control, TLU interface, timestamp synchronization, etc. (???)
 - Not started yet
- ARM linux, ethernet & software (???)
 - Not started yet

Hardware (PCBs)

- FLAME testboard, readout (detector plane) PCB (AGH Kraków)
 - Not started yet, waiting for final FLAME padring
- FPGA interconnection board PCB (AGH Kraków)
 - Not started yet, waiting for tests on Trenz Electronic module and some decisions...

Summary and questions

- New DAQ scheme proposed based on Zynq UltraScale+ modules
- Some firmware details still have to be fixed
- We should decide how to share the work on firmware
 - 1) Who can help Krakow / Dubna / somebody else?
- We should buy more TE0808 modules on the beginning of next year
 - 2) How many layers are we going to use in testbeam next year and how many in the future?
 - 3) Can anyone buy a few more modules?