

Design and Performance Studies of the Luminometers for Future Linear Collider Experiments

Veta GHENESCU

Institute of Space Science, Bucharest, ROMANIA

Overview

- Forward region in LC Experiments
- Thin LumiCal module design
- LumiCal prototype performance in beam-test
 - Beam-test setup
 - Results
- Conclusions and Future Steps

Forward region in LC Experiments

Goals:

- ☐ High precision integrated luminosity measurement;
- Instant luminosity measurement;
- Fast feedback for beam monitoring and tuning;
- Search for a new particles.

The **LumiCal** is a Si-W electromagnetic sampling calorimeter designed to:

- measure the luminosity with a precision of 10^{-3} at ILC and 10^{-2} at CLIC;
- covers polar angles range between 31 and 77 mrad.

The very forward region of the ILD detector.

The **BeamCal** is a similar electromagnetic sampling calorimeter, with tungsten absorber but **radiation hard sensors** (GaAs, CVD diamond). It designed for three major purposes:

- Improving the hermicity of the detector to covering polar angles range between 5 and 40 mrad;
- Instant luminosity measurements;
- Beam tuning.

The **LHCAL** extends the coverage of the calorimeter to the polar angle range of **LumiCal** and **ECAL**, and provides additional forward coverage inside the **HCAL** endcap.

Forward region in LC Experiments

- The LumiCal is a Si-W electromagnetic sampling calorimeter;
- □ 30 W absorber layers at ILC (40 at CLIC) interspersed with very thin detector planes;
- Fiducial volume between 41 mrad to 67 mrad;
- Compactness for transverse size of shower around 1 cm.

The silicon sensor prototype was produced by Hamamatsu in the technology based on:

- 6-inch wafer;
- 320 μm thickness;
- 4 azimuthal sectors in one tile, each 7.5 degrees;
- Radially segmented 64 pads with 1.8 mm pitch;
- 12 tiles makes full azimuthal coverage.

64 pads

Thin LumiCal Module

Beam-test set-up

Beam-test infrastructure @ DESY:

- □ Electrons 1 − 5 GeV energy;
- □ Data taken in August 2016 at 21 beam line area;
- EUDET telescope 6 MIMOSA planes;
- Dipole magnet 1 13 kGs for e/γ separation;
- DAQ framework provided:
 - EUDAQ (software);
 - Trigger Logic Unit (hardware);
- DUT (LumiCal multi-layer prototype)

Goals:

- Measurement of the shower position reconstruction;
- Measurement of the longitudinal shower development;
- Measurement of the transverse shower development;
- Measurement of Molière radius;
- \Box e/ γ identification with tracking detector in front of LumiCal;

Beam-test set-up

DUT (LumiCal multi-layer prototype):

- □ First submilimiter LumiCal detector module (~ 640 μm);
- 8 silicon sensors with 256 equipped channels;
- Silicon sensor 320 μm thick;
- FEB: APV-25 chip based;
- 2 silicon sensors plane used as tracker;
- Si sensors of calorimeter part always separated by one absorber layer;

Mechanical structure developed by CERN.

30 slots comb positioning the detector layers.

Results

Energy deposited in calorimeter for different e⁻ energy

Energy deposited distribution in LumiCal prototype for different beam energy - fitted with Gaussian distribution function.

Average total energy deposited in LumiCal prototype as a function of beam energy before (red) and after (blue) APV25 front-end chip calibration. The lower part shows the ratio of the E_{dep} to the straight line.

Results – transverse electromagnetic shower

☐ The function used to describe the average transverse energy profile of the shower is:

$$F_E(r) = A_C e^{-\left(\frac{r}{R_C}\right)^2} + A_T \frac{2r^{\alpha} R_T^2}{\left(r^2 + R_T^2\right)^2}$$

where: r is the distance from the shower center; A_C ; A_T ; R_C ; R_T ; α are the fit parameters.

- ☐ The fitting range corresponds to the area connected to readout.
- \square The function $F_E(r)$ can be reconstructed using the test-beam data and the MC simulation.
- The Molière radius, R_M , is a characteristic constant of a material. By definition, it is the radius of a cylinder with axis coinciding with the shower axis, containing on average 90% of the energy deposition of the shower.
- \square The Molière radius, R_M , can be found from the equation:

$$0.9 = \int_0^{2\pi} d\varphi \int_0^{R_M} F_E(r) r dr$$

Results – transverse electromagnetic shower

Average transverse shower profile for 1, 3 and 5GeV electrons in data and ratio between data and the fitted functions.

The effective Moliere radius as a function of the electron energy for data (blue) and simulation (red).

Important results:

- Effective Molière radius for data: (8.1 ± 0.3) mm
- Effective Molière radius for MC simulation: (8.4 ± 0.1) mm

Conclusions and Future Steps

- ☐ Thin LumiCal module with submillimeter thickness was developed and produced. Its geometry meets requirements of LumiCal conceptual design.
- ☐ The measured longitudinal and transverse shower shapes are described well by GEANT4 simulations.
- □ The LumiCal prototype demonstrates good linear response to the beam of 1 GeV 5 GeV.
- ☐ The results on effective Molière radius calculation give $R_{\mathcal{M}}$ around 8.1 ± 0.1mm for 5 GeV e⁻ and are in good agreement with MC simulations.
- ☐ Major components developed by **FCAL Collaboration** can be operated as a system in the future **LC experiments**.
- Next beam-test at DESY-II in autumn 2019 will be done with a calorimeter fully equipped with sensor planes and using the readout with FLAME to demonstrate that the design specifications in spatial and energy resolution will be matched.

THANK YOU FOR YOUR ATTENTION

Acknowledgements:

This activity was partially supported by the Romanian UEFISCDI agency under 18PCCDI 2018 project, the Romanian Space Agency, R&D projects 160/2017 and 168/2017 and by the European Union Horizon 2020 Research and Innovation programme under Grant Agreement no.654168 (AIDA-2020).

