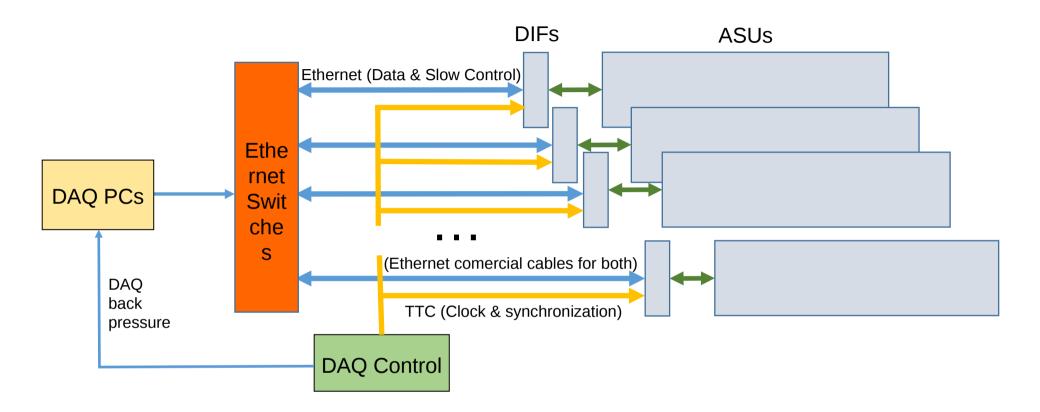


Detector InterFace (DIF) board status for CALICE SDHCAL


D. Belver on behalf of the CIEMAT group

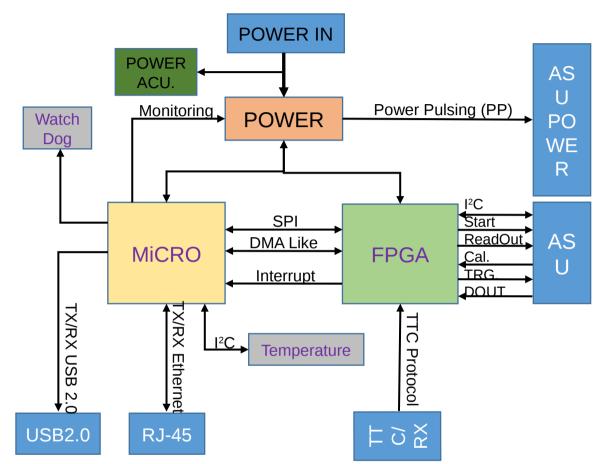
CALICE Collaboration Meeting, Utrecht, 10-12 April, 2019

Outline

- SDHCAL DAQ architecture.
- DIF main characteristics and architecture.
- DIF to plane interface.
- DIF PCB. Power distribution plane and circuits.
- DIF + ASU tests: Java application.
- DIF status.
- Summary.

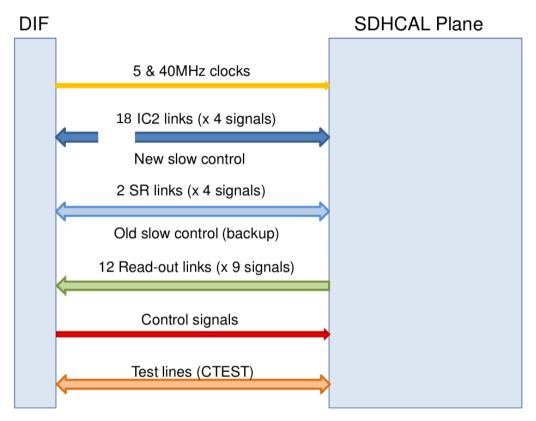
SDHCAL DAQ architecture

- One DIF per plane, including 3 ASUs (Active Sensors Units).
- Slow control & readout by Ethernet using commercial switches.
- Clock & synchronization (time & trigger) by the TTC system used in the LHC.


DIF main characteristics

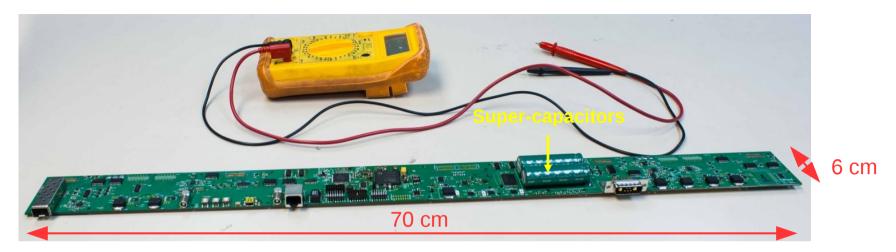
- The DIF is the interface board between the ASU board with all HARDROC3 (HR3) ASICs and the DAQ software. It can handle up to 432 HR3 (1 x 3 m detector).
 - ASU interface \rightarrow Kyocera connectors (80 pins for signals and supply).
 - DAQ interfaces.
 - 1. TTC link (sends both the clock and synchronous commands to the ASIC).

2. Ethernet (UDP) \rightarrow to receive all ASIC data.


- It is developed with a FPGA and a MCU to ensure communication with both ASICs and DAQ software (using Ethernet link).
- The DIF controls the HR3 configuration through redundant I2C, performs readout and sends data to the DAQ software.
- It receives all ASICs configuration data and local DAQ commands and sends data to the DAQ software through a local Ethernet interface.

DIF architecture

- HR3 slow control through I2C bus (two of the old slow control buses only as backup)
- Data transmission to/from DAQ by Ethernet. USB 2.0 (for debugging).
- 93 W Peak power supply with super-capacitors.


DIF to plane interface

Total 216 lines + Power

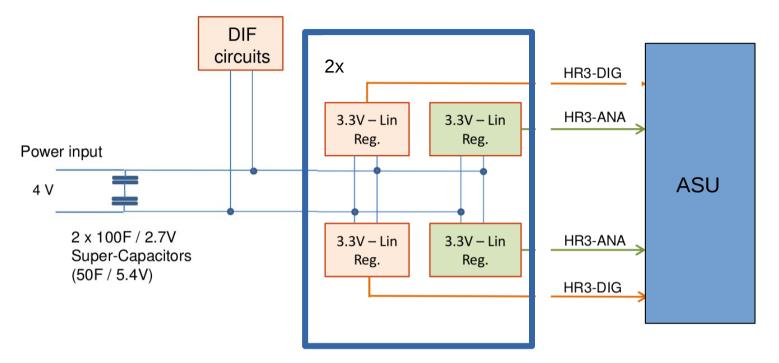
- HR3 communication:
 - 18 I2C lines → 12 parallel lines + 6 redundant shared between two adjacent lines of maximum 36 ASICs (for speed and reliability reasons).
 - For each line ASIC, configuration (one I2C line + 1 redundant) and ASIC readout (two open collector serial links) are on separated doubled lines.

DIF PCB (I)

- **Design**: it must be as close as possible to each ASIC line, filling the narrowest space.
- Super-capacitors: the global power supply can provide the average power (not the maximum). These capacitors are the local storage for the current needed during the detector active period. Requirements → 30 A at 3.7 V. Solution → 2 x 100 F / 2.7 V.
- TM4C1294NCPDT MCU (120 MHz, 10124 KB flash memory):
 - Update FPGA configuration. Receive and execute DAQ commands.
 - Receive, store locally and send HR3 readout data (via Ethernet).
 - The selection of I2C lines through 1-Wire.
 - Control the power supply of the plane. Read the power and temperature sensors.

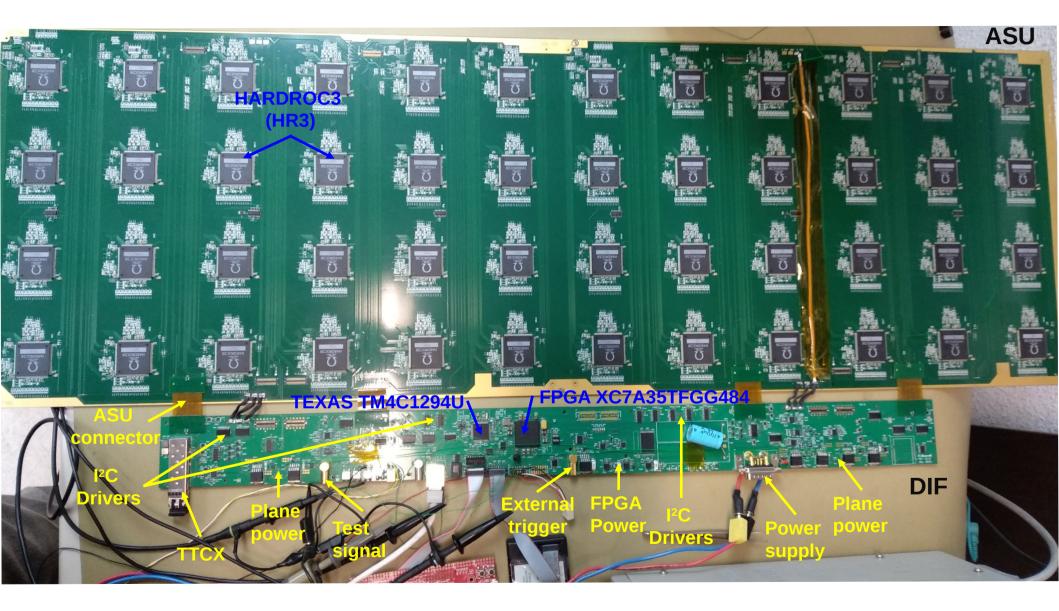
DIF PCB (II)

- Xilinx Artix-7 FPGA (pins 3.3 V compatible, RAM from 1800 to 13140 kb):
 - FPGA and MCU exchange the HR3 configuration through SPI and FPGA generates 18 independent I2C lines which can work in parallel.
 - Readout information is transferred using a DMA Like.
 - Synchronization and transmission of TTC clock to the plane.
 - Transform fast commands coming from TTC into signals for the detector plane (Reset, Start_Acq, Triger_ext) and informs the processor about the new state.

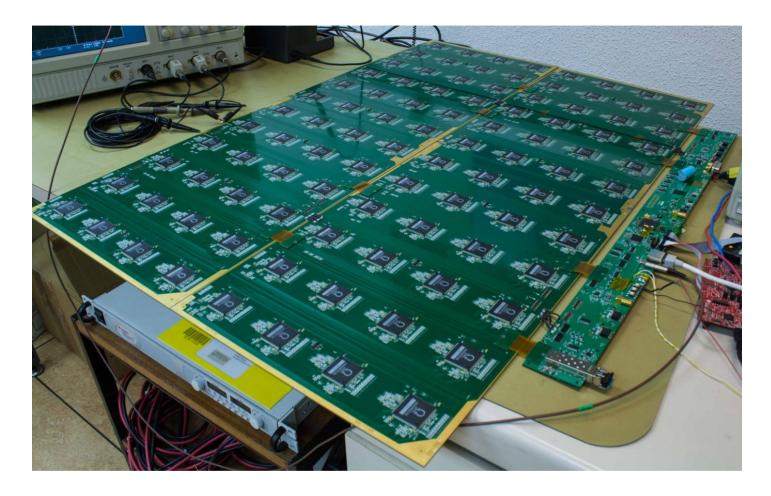

• Digital readout:

1. Trigger mode \rightarrow the ASICs are active after the *StartAcquisition* signal.

2. Triggerless mode \rightarrow the ASICs are put into acquisition state at the start of a Spill signal (the accelerator clock).


- **Power pulsing**: during the inactive period, ASICs can be switched off to reduce the power consumption of the electronics and thus the heat dissipation in the calorimeter.
- **Data format**: to make easy the reconstruction and analysis of the data, additional information are added to the data stream (the ASIC data are encapsulated in a specified format by the DIF's FPGA with a header, a trailer and some information).

Power distribution: plane and circuits



- **Plane**: two analog and two digital voltage regulators.
 - Regulators low dropout type (about 500 mV max) needed to power the plane.
 - Current monitoring and over-current protection per output voltage and slab.
- **Circuits**: FPGA and MCU can be also set to low power mode.
 - Switching regulators for lower voltages (1.0 and 1.8 V) to reduce dissipation.
 - FPGA power ON sequencing is done from the MCU.

DIF + ASU tests (I)

DIF + ASU tests (II)

- Tests done with an individual DIF, DIF + 1 ASU and DIF + 2 ASUs connected.
- A last test with 3 ASUS will be also done.

Java application

	🛃 DIF TEST
	Power Supply Temperature TTC ASU 1-Wire FPGA EEPROM Ethernet Exit
	ASU X
🛃 ASU Configuration	ASU Line HR3 Offset Length 1 • 1 • 0 • 0 • • BYTE Cfg Global Load Local Load
Enable Power Pulsing CTest Preamp Gain	✓ SS Feedback Cap0 ○ OtaQ. Mode (1 Test / 0 Normal) ✓ ✓ SS Feedback Cap1 ✓ Discriminator Output (1 Latched / 0 Direct) RAM Rd RAM Wr ✓ SS Feedback Cap2 ✓ Select out_trgb (1 Global OR / 0 Chn Discri) FLASH Rd FLASH Prg ✓ Start Readout Selection (1 PLL / 0 40MHz) ✓ FLASH Rd FLASH Prg
Mask0b Mask1b Mask2b DAC0	✓ End Readout Selection (1 1 / 0 2) ✓ PLL Mode (1 Normal / 0 VCO Test) ✓ PSB Sel 0 FSB Sel 1
DAC1 DAC2 FSB Feedback	✓ Select Trig0 for Memory Writing PLL Factor (031) ○ Select Trig2 for Memory Writing PLL Factor (031)
Set to default	Read from File Write to File Save Exit

A Java application designed to test the different functionalities of the DIF and ASU.

DIF status

•	Documentation:	Schematics and Layout	\checkmark
•	Fabrication & Assembly:	4 DIFs fully assembled and operational	\checkmark
•	Firmware development:	Micro-processor	
		 Ethernet communication 	\checkmark
		 FPGA communication 	\checkmark
		 Data acquisition 	\checkmark
		FPGA	
		• I2C	\checkmark
		 Synchronization 	\checkmark
		Power Pulsing	Х
		 Data acquisition 	\checkmark
•	Functional tests:		
		Power	\checkmark
		• FPGA	\checkmark
		 Micro-Processor 	\checkmark
		 TTC Synchronization / commands 	√ / <u>X</u>
		 Power Pulsing (super-cap) / ASU 	√ / <u>X</u>
		 Old slow control test with ASU 	\checkmark
		 I2C slow control test with ASU 	\checkmark
		 Data acquisition test with ASU 	Х

Summary

- 4 DIF boards fully assembled.
- Most of the performances of the DIF are completely tested.
- DIF remaining tests:

1. Power Pulsing (PP) mode \rightarrow PP will be tested using one ASU and simulating powering ON the ASICs (beam) and OFF (the rest of the time).

The super-capacitors were tested with an active load simulating real conditions (5 ms of every 200 ms). Both a resitive and a capacitive loads were used.

2. Data acquisition \rightarrow it will be tested the data transmission from HR3 to the DIF and sending data to the DAQ using Ethernet (UDP).

3. TTC commands \rightarrow in the synchronization part.