

New ideas from the Topical Workshop for CEPC Calorimetry

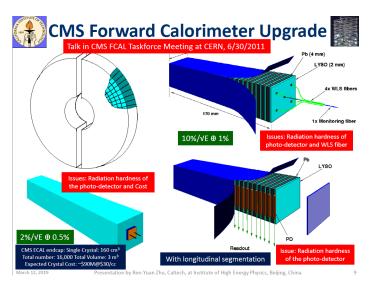
Yong Liu (IHEP)

CALICE Collaboration Meeting, Utrecht

Apr. 10, 2019

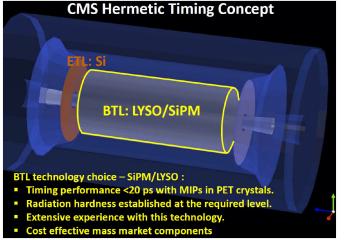
Introduction

- Topical Workshop on the CEPC Calorimetry
 - March 11-14, 2019
 - https://indico.ihep.ac.cn/event/9195/
 - ~45 participants (and via remote connection)
 - From China, France, Germany, Italy, Korean, US

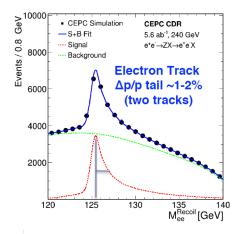


- The first workshop: dedicated to CEPC calorimeters
 - Cover a large range of options: PFA-oriented, crystal, dual readout
 - Fruitful and in-depth discussions
 - Motivations, (expected) performance and validation, pros/cons, cost, occupancy, etc.
 - General impression: very positive feedback from many participants
- Will concentrate on new ideas/designs in this talk

Crystal calorimeters

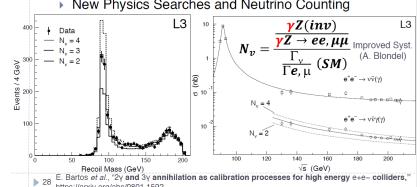

- Overview
 - Not included in CEPC CDR
 - Optimal intrinsic energy resolution
 - $\leq 3 \% / \sqrt{E}$ achieved for electrons/gammas
 - Many successful HEP applications since 1975
 - Nal (Crystal Ball), BGO (L3), Csl (BaBar, Belle, BES3, CLEO...), PbWO (CMS)
 - Future crystal calorimeters in HEP
 - LSO/LYSO for COMET, HERD, and HL-LHC
 - CsI and BaF2:Y for Mu2; PWO for PANDA
- CEPC requirements: not as stringent as HL-LHC
 - Response time, radiation hardness
- Widely open for innovative designs
 - To be compatible with PFA?: high granularity + optimal energy resolution

The CMS MIP Timing Detector



Crystal calorimeter for CEPC

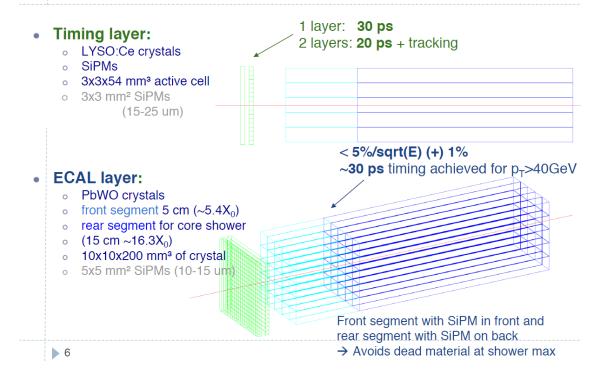
- Physics motivations
 - Electrons' Bremsstrahlung: energy recovery
 - Improve angular resolution and gamma counting
- Performance requirements to be fixed (quantitively)
- Cost estimate: crystal raw materials
 - PbWO crystal for CEPC ECAL: ~131 M\$
 - ~12 m³ for 1 barrel, ~4.4 m³ for 2 endcaps
 - Based on the unit price \$8/cc for PbWO (volume at 10m³ level)
 - 24X0 in total, R=1.8m, Z=4.7m
- Other possibilities
 - Use crystal for barrel only: radiation and cost
 - Smaller radius for ECAL: e.g. R=1.5m (no TPC)
- Several new designs proposed for CEPC ECAL


Electrons

Talk from **Christopher Tully**

EM Resolution and Photon Counting

- **EM Resolution also improves angular measurements** and resolves Ny counting
- Recoil photons (~8% of full √s collision rate)
 - New Physics Searches and Neutrino Counting

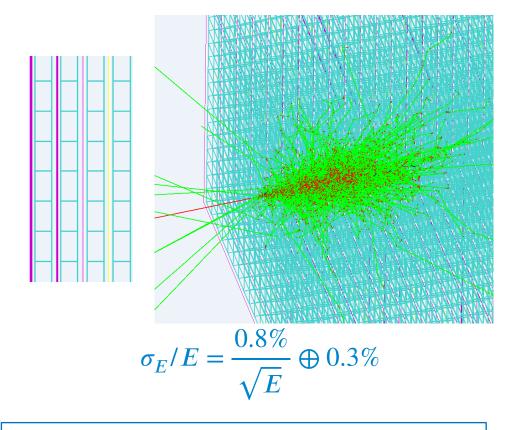


Crystal calorimeter: new designs for CEPC (1)

- Comprehensive simulation studies in Geant4
 - 2 timing layers: LYSO and SiPMs (TOF + tracking)
 - 2 ECAL layers: PbWO + SiPMs
- Impacts to energy resolution
 - Dead materials: readout boards, cooling, cables
 - Sub-detector in front: tracker
 - Photostatistics from SiPM
- Calorimeter: other performance
 - Single/pair EM showers, discrimination
- Timing layers
 - LYSO bars: ~20 ps timing resolution
 - Time-of-Flight: Particle ID performance
- Potentially compatible with PFA

Christopher Tully (Princeton), Sarah Eno (Maryland)

Segmented Crystal Calorimeter Module


Crystal calorimeter: new designs for CEPC (2)

Yong Liu (IHEP)

- Design: PFA homogenous ECAL
 - Silicon layers: positioning (high granularity)
 - Crystal layers: optimal energy resolution
- First simulation studies in Geant4
 - Energy sampling fraction >90% (with crystal)
 - Stochastic term from energy fluctuations <1%
 - Also investigated the performance (trade-off) when using some absorber for a more compact design
- Open issues: worthwhile for further studies
 - Photostatistics from SiPM, crystal-SiPM coupling
 - Impact from dead materials (e.g. between layers)
 - Longitudinal sampling frequency

Yong Liu (liuyong@ihep.ac.cn)

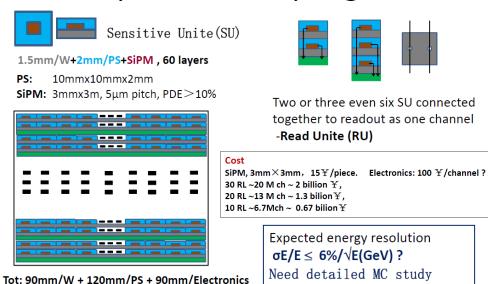
Transverse granularity in crystal layers

High-density lead glass (~6g/cm³) can be an interesting cost-effective option

Crystal calorimeter: new designs for CEPC (3)

Option 1: crystal tiles + absorber

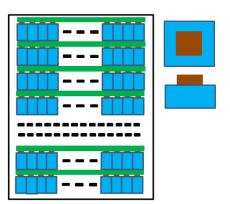
• Cost estimate: 0.7-2B CNY; expected performance: $\leq 6\% / \sqrt{E}$?


Option 2: crystal blocks

• Cost estimate: ~1.2B CNY; expected performance: $\leq 4\%/\sqrt{E}$?

Junguang Lv, Zhigang Wang (IHEP)

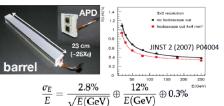
MC simulation studies: not done yet; necessary for performance/optimization


Option 1: Sampling ECAL

Sampling fraction and light output are much higher than the Sci-ECAL in CDR, necessary to get a good energy resolution.

Option 2: Segmented crystal ECAL

Readout unit:

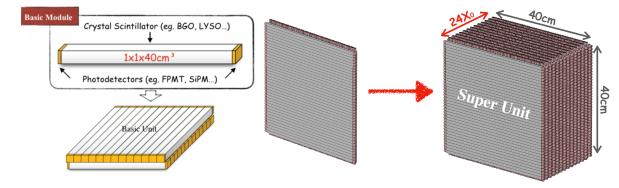

Tot: 10X22mm(25 rad. length)PbWO4 + 10X8mm /Electronics

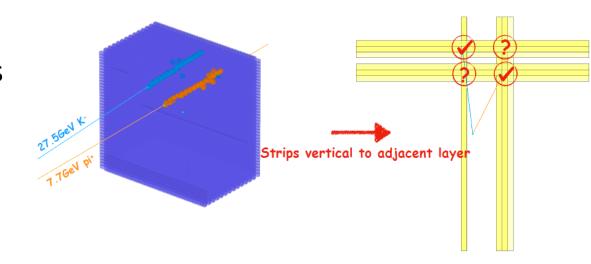
Cost Crystal:5 $\frac{1.46}{100}$ Cryst ~0.66 billion Y Electronics. 6.6M ch ~ 1.2 billion Y Total:

PbWO4 crystal: 10mmx10mmx22mm **SiPM**: 6mmx6mm, 5μm pitch, PDE>10% 10 layers

The linear range of SiPM: 4.8 x105 pe dE/dX of MIPs in =22.4MeV ~ 150pe? Dynamic range of is 1-3.2x10³ MIPs

Reference: CMS PbWO4 ECAL


Expected energy resolution: $\sigma E/E \leq 4\%/\sqrt{E(GeV)}$? Need detailed MC study



Crystal calorimeter: new designs for CEPC (4)

- Design: crystal bars
 - Read out at both sides: precision timing
 - To reduce #channels
 - #channels: ~1.4M << 25M (Si-W ECAL)
- Simulation studies
 - Separation of multi-particle showers
 - Physics requirement of separation (2 or 4 jets)
 - Energy portion of π^0 in jets
 - $\pi^0 \rightarrow \gamma \gamma$ at different energy
 - Timing resolution: 1×1×40cm³ crystal bars
 - Hit-position dependent
 - Double-ended readout: 5 45ps
 - Effective position resolution: ~7mm

Summary

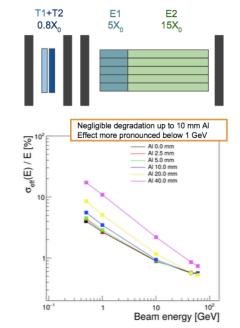
- Crystal calorimetry designs proposed: to be compatible with PFA
- Major open issues: to be addressed by further simulation studies
 - Longitudinal segmentation: number of crystal layers
 - Impact from dead materials: especially active cooling plates
 - "Digitizer" in the CEPC software: statistics of scintillation photons and SiPM
- Seeking funding support for further R&D studies: currently under discussion
 - In the framework of MOST: 2020 2023, for both CEPC accelerator and detectors
 - Aim: technically prepared to build the accelerator if green light is granted in 2023
 - To promote wider and deeper international collaborations
- Discussing to have another topical calorimetry workshop: welcome wider participation

Additional Slides

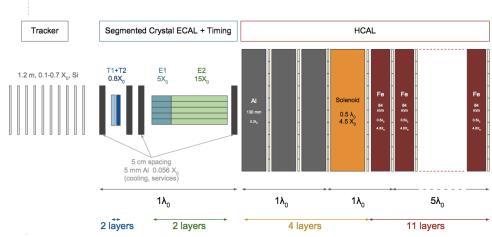
Segmented crystal calorimeter

Christopher Tully (Princeton), Sarah Eno (Maryland)

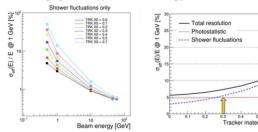
Services required:

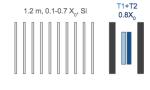

- FE/ASIC for read-out → PCB material
- Cooling plate
- Cables

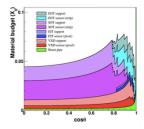
Space allocated:

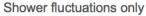

- o 5 cm in front of crystal timing layer T1 (for T1 read-out)
- 10 cm in front of crystal ECAL E1
 - \blacksquare 5 cm for T2 and 5 cm for E1 \rightarrow cooling plate may be shared
- 5 cm in rear of crystal ECAL E2 (for E2 read-out)

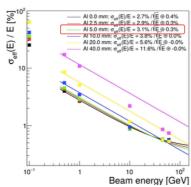
Material budget:

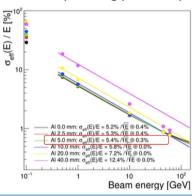

- Realistic cooling plate ~ 3 mm Al \rightarrow 0.035 X_0
- o PCB ~ 2 mm, + cables, etc
- o total: 0.056 X₀ (5 mm Al equivalent) for each layer
- Scan up to 0.5X₀ / layer

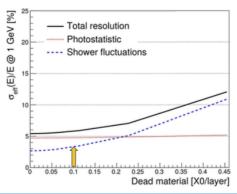







- Study impact of tracker material budget in front of SC-E(P)CAL
- Material budget:
 - Realistic material budget ~0.3X₀?
 - Scan up to 0.7X₀
- Negligible impact on energy resolution





Total (including photostat.)

Stochastic term vs dead material

Segmented crystal calorimeter

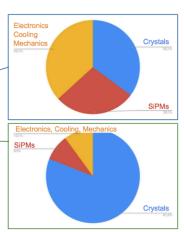
Channel count and cost estimate

	T1+T2 (TIMING)	E1+E2 (ECAL)
Area barrel	53	53
Area endcap	19	19
Total area (barrel+endcaps)	72 m²	72 m²
# Channels barrel	977k	859k
# Channels endcaps	344k	374k
Total # of channels (barrel + endcaps)	1.3 M	1.2 M
Crystal cost	10 M€	78 M€
SiPM cost (+monitoring for ECAL only)	8 M€	8.5 M€
Electronics cost	5 M€	4.5 M€
Cooling+power+mechanics cost	5 M€	5 M€
Sub-total cost (barrel+endcaps)	28 M€	96 M€
Total cost (barrel+endcaps)	~124 M€	

 Geometrical assumptions for cost estimate:

Barrel

- Radius = 1.8 m
- Length = 4.7 m
- Area ~ 53 m²
- Pointing geometry → saving ~20% channels

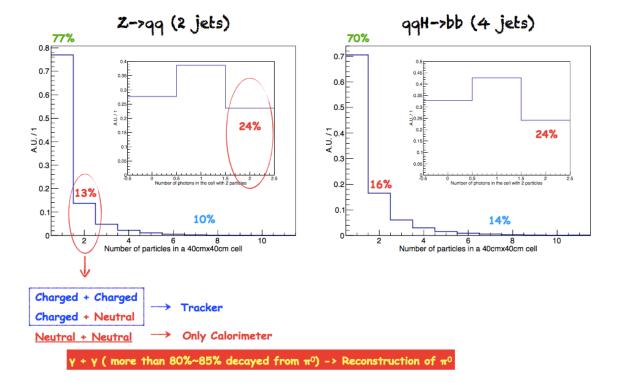


- Endcaps (x2)
 - Inner radius = 0.3 m
 - Outer radius = 1.75 m
 - Area ~19 m²
- Details of the cost estimate <u>here</u>

Summary

- o 625k channels/layer
- Cost drivers in TIMING layers (tot ~28M€):
 - o 35% crystals, 28% SiPMs, 37% electronics+cooling+mechanics
- Cost drivers in ECAL layers (tot ~96M€):
 - o 81% crystals, 9% SiPMs, 10% electronics+cooling+mechanics
- Power budget driven by electronics: ~74 kW
 - o 18.5 kW/layer
- Room for optimization of the detector performance vs cost

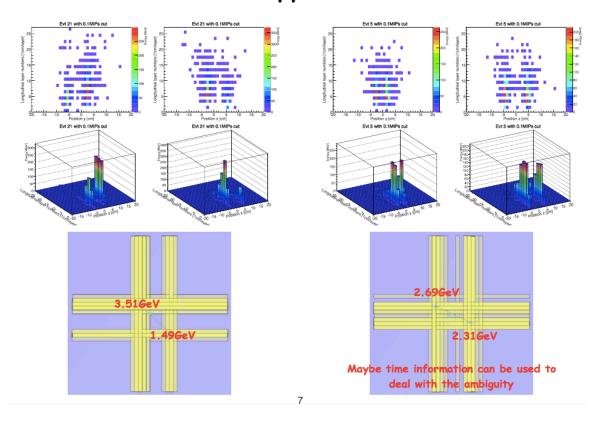
12


Yong Liu (liuyong@ihep.ac.cn)

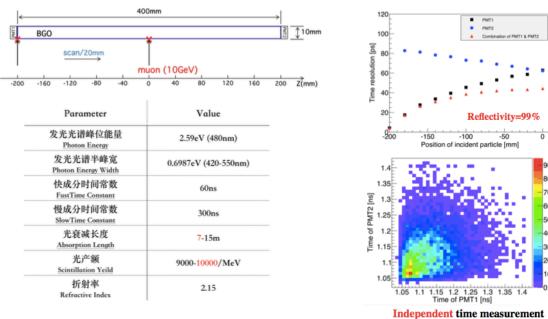
5

Calorimeter with crystal bars

Physics requirement of separation



Proportion of different energy π^0 Z -> 99 Z -> TT Larger Energy of Photon [GeV] Larger Energy of Photon [GeV] 99H -> X 99H->X Z->99 Z->TT ETO > 20GeV 0,42% 0.66% 14.9% Emo > 35GeV 0.02% 0.1% 1.8% Ey < 0.2GeV 45% 42% 7.5% Larger Energy of Photon [GeV]

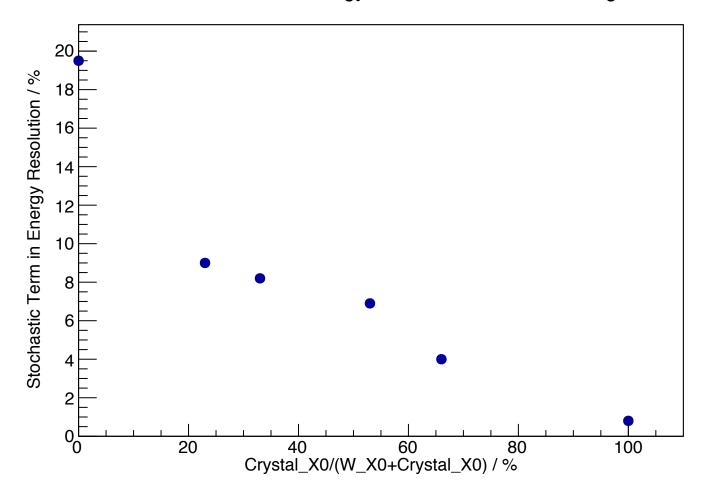


Calorimeter with crystal bars

π° → γγ at 5GeV

Time measurement

Intrinsic time resolution of 1×1×40cm³ BGO crystal:


- Single-ended readout, 5 90ps
- Double-ended readout: 5 45ps, effective position resolution, ~7mm

8

Calorimeter with silicon and crystal layers

Stochastic Term of Energy Resolution in various designs

- SiW and SiSc as 2 major options
- Introduce thin W-absorber plates for greater compactness
 - Si-Sc-W super-layers
 - Varying W/crystal thickness
 - Trade off energy resolution
- Note: digitiser not yet implemented in the simulation
 - Energy fluctuations only
 - Impact from scintillation photons and SiPM: to be studied