

Compact Digital Electronics for SiW Ecal and other applications

D.Breton, J.Jeglot, J.Maalmi, P.Rusquart, A.Saussac (SERDI ,LAL) A.Thiebault, J.Bonis, D.Douillet, A. Gallas, C.Bourgeois (SDTM, LAL) A.Irles, R.Poeschl, D.Zerwas (LAL)

CALICE Meeting Utrecht Avril 2019 Jeglot

Introduction

- Latest status of developments proposed by LAL group for a Silicon-Tungsten electromagnetic Calorimeter DAQ in ILD.
- Electronics developments is done by:D. Breton, J.Maalmi, J.Jeglot.
 - 1. Power Pulsing: Proposal to use new ultra-flat supercapacitors on all ASUs of the Slab (order 10 ASUs per slab).
 - Control and Readout Electronics: Proposal for a compact Slab digital interface board and Control & Readout module.

Ecal Constraints

1

Granularity

Hybrid Timing and Energy Calorimetry

The Challenge: a very Compact Detector!

Constraints:

- > Spatial constraints:
 - Iimited space between layers
 - Limited space at the end of a slab
 - Control & Readout electronics at the extremity of the Slab
 - Signal Integrity over the Slab
- Low power consumption: power pulsing
- Thermal uniformity
- Mechanical Assembly process

Ecal Electronics Space Constraints

Space constraints for the Active Sensor Units (ASUs):

- Maximum Height for Electronics (including PCB): depends on number of layers (20-30)
 - For prototype: (PCB + components for the SKIROC-2 BGA option) : ~ 3mm

Current ASU Electronic board design:

- PCB thickness (FEV 12): 1.6 mm
- SKIROC BGA height: 1.4 mm
- ASU Chip on Board (total): 1,2 mm

Space constraints for the Slab Interface Board (SL-Board):

- L-shape (even and odd ASUs) Dimensions: see below.
- Maximum Height: ~ 12 mm

E-CAL Services

Global Architecture Scheme

DIF system for the SiW ECAL is shown with the SL-board, CORE Kapton and the CORE Module consisting of the CORE-mother board with the CORE daughter board. $\sim 2 \times 15$ slabs

her

High Granularity

Hybrid Timing and Energy Calorimetry

Ultra-flat Capacitors

Ultra-Thin Supercapacitor DMH series DMHA14R5V353M4ATA0 35 mF / 4.5 V

HIgh Granularity Hybrid Timing and Energy Calorimetry

a P2IO project by LLR, LAL :

Integrated capacitors permit **the peak current of ~1.5A** <u>to be local</u> during power pulsing => recharge is limited to a total of ~150mA ...

2020

Charge/Discharge Cycle Test : Charge voltage: DC4.5 +0/-0.1V Temperature : 25 +/-2 ºC Current:5A Test cycle : 50,000cycles

CALICE Meeting Utrecht Avril 2019 Jeglot

Status of development: SL_board

42

her

HIgh Granularity Hybrid Timing and Energy Calorimetry

a P2IO project by LLR, LAL and

• (16 skiroc2a on COB and BGA version)

TEST OK

CALICE Meeting Utrecht Avril 2019 Jeglot

2020

Status of development: CORE_kapton

Core Module connector (100 pins):

7 common differential pairs for sensitive signals, *30 individual pairs* for control and readout, 14 common lines, GND

SL_board connectors (40 pins):

7 common differential pairs for sensitive signals, *1 individual pair* for control and readout, 14 common lines, GND

1. C

The Acquisition Module

The Control & Readout Acquisition system will be based on an **existing mother board** that handles:

- Control & Readout through USB/Ethernet/ Optical fiber
- Distribution of the clock and fast commands
- > There are existing low level **C-libraries**. (LAL-ML protocol)
- > This LAL development is already used for other experiments.

Firmware Development Status: SL Board FW Schematics

Remaining Firmware Blocks to develop : Data Readout Interface and Katpton Interface

CALICE Meeting Utrecht Avril 2019 Jeglot

High Granularity Hybrid Timing and Energy Calorimetry a P2IO project by LLR, LAL and IRFU

Software Development Status: Main Panel for Acquisition:

- The Software can handle the communication through FTDI connector or through CORE Module.
- It handles the whole detector module:
 - Two sides with 15 SLABs each.
 - Each slab with up to 5 ASUs.
- It written in C under Labwindows CVI
- The C-functions that handles the communication (readout and configuration) can be used as a a library with any other program that handles C-langage.

2020

Ongoing work for readout ...

High Granularity

a P2IO project by LLR, LAL and IRFU

Hybrid Timing and Energy Calorimetry 1. C

J.Maalmi

Software Development Status: Panels for Slow Control Configuration

- > The number of ASUs on each slab is detected automaticaly using slow control readout.
- All necessary slow control parameters can be programmed through the Software: already tested with COB and BGA versions of the FEV!
- Slow control configuration is checked by writing twice the same values to the SKIROC shift register and reading back the pushed value on the SROUT signal.

Ne 1

High Granularity

and Energy Calorimetry a P210 project by LLR, LAL and IRFU

Hybrid Timing

Status of development: High Voltage kapton

HV Kapton (for 4 wafers power supplies) top view

HV Kapton (for 4 wafers power supplies) Bottom view

CALICE Meeting Utrecht Avril 2019 Jeglot

Status of development: SIW ECAL SYSTEM

FEV COB BOTOM View

Usb communication ok

ASU – Slboard first slow control test ok Full Firmware & Software in progress

> HIgh Granularity Hybrid Timing and Energy Calorimetry

a P2IO project by LLR, LAL and

Ne 1

CALICE Meeting Utrecht Avril 2019 Jeglot

Status of development: TESTBEAM SETUP

HIgh Granularity Hybrid Timing and Energy Calorimetry

a P2IO project by LLR,

Ne 1

Preparation for Test Beam in DESY

- We are currently preparing a test beam in DESY (June 2019), there are two options for the readout:
 - Readout through CORE module (via USB/UDP), but still a lot of work in order to develop the communication through the Kapton.
 - Readout of each SL-Board through FTDI module directly via USB.
- CORE module, will be used anyway for synchronizing the SL-Boards.
- Cycles can be handled :
 - with an External signal connected to the External Trigger Input of the CORE Module,
 - Or generated internally in the firmware of the CORE Module: the Delay between Cycles and the Acquisition Window will be programmable by Software.

gh Granularity /brid Timing id Energy Calorimetry

Conclusion

- > The test of the new Digital Interface of the SLABs : the **SL-Board**, is in **good progress**:
 - Slow control configuration of all the SKIROCs on an ASU (BGA and COB) is validated.
 - ongoing work for the data Readout Interface.
- > We are currently preparing a test beam in DESY for June 2019:
 - We are preparing the mechanical structure that handles the detector and all the electronics
 - We are also working on the Firmware and Software in order to handle:
 - the synchronization between multiple SL-Boards using the CORE Module
 - the slow control configuration, Data Readout and Storage and the Acquisition parameterization.
- Next Steps:
 - > Test the **power-pulsing mode** using the ultra-flat capacitors on each ASU.
 - Test the High Voltage distribution capton between SLBOARD and ASU.

CALICE Meeting Utrecht Avril 2019 Jeglot

Optical link

Control & Readout Electronics

The new developments for the control and readout electronics to satisfy D14.4 (space constraints of an LC Detector) :

> SL-Board :

Gbit UDP

USB

CORE Module : Control & Readout Module

Digital interface board situated at the extremity of the Slab, based on a MAX10 FPGA, which handles:

- Control & readout of the chained ASUs (SKIROC interface)
- Interface to the CORE acquisition module through a kapton cable (rigid+flexible) in order to have flexibility for the connection inside the detector (45° angle)
- Local 40MHz oscillator and remote USB interface for standalone control of the Slab (permits independent testing of Slab interface and kapton communications).

CORE-Module : Control & Readout module that handles a column of Slabs, for the prototype phase.

Control & Readout Signals

Power-Pulsing: New ultra-flat Capacitors

Proposal: new ultra-flat capacitors on all ASUs for the AVDD decoupling resulting in:

- Peak current reduction: especially through the connectors
- No voltage drop along the slab
- Homogeneous peak power dissipation during power pulsing.

400 mF capacitor/ 15A (peak Current) at the end of the SLAB to 140 mF / 1.5 A per ASU.

Reminder of power consumption values :

- DVVD (3.3V) 11 mA/chip, total 180 mA/ASU
- AVDD (3.3V) / Chip: 90 mA/chip during ACQ, 20 mA during Conversion, 0.01 mA idle

measured in house and compared with measurements by Stephane Callier (Omega)

- Distributing the capacitors along the slab permits reducing current between ASUs by a factor ~50-100.
- The current peak is local.
- The current delivered for charge reloading of the capacitors will be actively limited at the extremity of the Slab

CALICE Meeting Utrecht Avril 2019 Jeglot

