KLauS Test & Design

Zhenxiong Yuan

KIP, Heidelberg

zhenxiong.yuan@kip.uni-heidelberg.de

Overview

- **Setup:** raspberry + interface board + testboard + socket
- Measurement procedure:
 - ADC Non-linearity
 - Pedestal
 - SiPM input bias scan
 - Hold delay scan
 - Trigger threshold
 - Charge integration with auto-trigger
 - Others...
- 3h for the whole test.

ADC Non-linearity

- Code density test:
 - Ramp signal (0.4-1.7V) to the ADCp
 - Archived for calibration usage
- Discussion:
 - Impossible to do the test on detector, but possible on HBU alone
 - INL <1% for all tested channels
 - Stable over temperature variation
 - Perforance degradation observed
 - Could be the mechincal stress
 - Observed also after glog-top for naked chip

Pedestal Test

- Measurement setup:
 - ADCp to the front-end output, zero threshold(noise triggerred)
 - Archieved for later reference
- Discussion:
 - Almost the same for different gain branches(and their scales)
 - Stable over temperature variations
 - BIG variation among channels

Pedestal Test

- Measurement setup:
 - ADCp to the front-end output, zero threshold(noise triggerred)
 - Archieved for later reference
- **Discussion:** •
- Almost the same for different gain branches
 Stable over temperature variation

 - BIG variation among channels
 - Most comes from the ADC comparator
 - Will be re-designed for KLauS6

Hold-delay scan

- Charge injection test:
 - Fixed large signal injected
 - different DAC setting (gDAC+fDAC)
- Discussion:
 - Possible to characterize on HBU
 - Same "correct" DAC setting for HG/LG branch
 - Variations among the "correct" setting is not a big issue

Trigger threshold

- Charge injection test:
 - Charge scan to find the threshold level
 - Different DAC setting(gDAC + fDAC)
- Discussion:
 - Better to characterize it with SiPM
 - Large variation, can be tuned by fDAC

50 r

45

Charge scan

- Charge injection test:
 - Charge scan, 20 points for each channel and gain scale
- Discussion:
 - Impossible to characterize on HBU
 - 10% variation among channels

KLauS PLL-based TDC Strucutre

- Stable
 Fast lock < 5us
- Power consumption:
 - VCO: 2.3mA
 - Buffers: 3.6mA
 - Latches: no DC power
 - Others: 0.6mA
 - Total: 6.5mA
 - 0.35mW/Ch
- < 2µW/Ch (0.5%PP)

Simulation results

- Cycle-to-Cycle Jitter is more interesting to us
 - Depends on the loop bandwidth, ideal input clock assumed
 - Latch noise also contributes to jitter
 - Input reference clock also contributes to jitter

Status report

- 49 chips received, 10 tested
 - 8 chips working
 - 1 chip with power problem
 - 1 chip broken
- SiPM input bias scan
- Socket issue Solved
- Power issue Big capacitor needed
- The submission for the KlauS6 delayed
 - Digital design flow changed
 - Changes in front-end according to the uniformity test

Summary

• Uniformity test for the BGA packaged chip

- The submission for the KlauS6 delayed
 - Digital design flow changed
 - Changes in front-end according to the uniformity test

ADC @ different temperature

• AD conversion @ fixed DC input

No big changes in ADC alone.

Expected: performance determined by the mismatches between capacitors.

• Differential Non-Linearity (ROI)

min/max:-0.06/+0.21

Fullchain charge injection @ different temperature

- Input SiPM bias: doesn't change
- Front-end Pedestal: no big change
- Charge injection:
 - For the working range 20-40°C, delta < 3 bin, within 1% FSR.

Fullchain @ fixed charge injection

- Close look at fixed charge injection with pulse reconstruction
 - Hold-delay contributes: 0.4ns/°C
 - Peak time no changes, but peak height changes around 1bin/°C

