Gain calibration systematics and saturation correction

CALICE Collaboration Meeting

Olin Pinto DESY, 11th April 2019

Outline

- ✓ Introduction of AHCAL prototype
- \checkmark Gain calibration
 - ✓ Systematics
- ✓ Saturation correction
- ✓ Summary

AHCAL technological prototype

Detector

Prototype:

- ✓ Sampling calorimeter: 38 active layers of 72 x 72 cm² alternating with ~ 1.72 cm thick passive steel absorbers
- Based on scintillators and silicon photomultipliers (SiPMs)
- ✓ Scintillator tiles of size 3 x 3 x 0.3 cm³, dimple for light focussing, wrapped in reflecting foil

ASI

✓ HCAL base unit (HBU) with fully integrated electronics

- ✓ Gain in terms of physics: is the charge that comes out of one fired pixel (and we measure it in ADC)
- ✓ A peak corresponds to a certain number of photoelectrons (0 pe, 1 pe) in one SiPM
- \checkmark n = 0 (no photon detected) pedestal
- Definition: Gain is the distance between two consecutive photo-electron peaks
- Spectrum is fitted with multi-Gaussian function with a single peak-to-peak distance

Gain distribution - AHCAL

Gain from May, June and October 2018

May : No power pulsing June: No power pulsing October: Power pulsing

- \checkmark 2 % global shift is observed between power pulsing (PP) and no power pulsing (No PP)
- \checkmark The distribution within a ASIC is much narrower
- \checkmark 95 % of the channels are calibrated individually,
- \checkmark For 5 % the fit does not work, they are calibrated with chip average values

Gain systematics

- ✓ The usable V_{calib} range differs between channels because of differing LED responses between channels
- \checkmark This makes scanning over several V_{calib} values a necessity for calibration

Idea to calculate:

- ✓ Channels which fit more than once get directly the RMS
- ✓ Channels which fit only once get the uncertainty from the fit
- ✓ Channels which do not fit at all get the RMS of the corresponding chip

Gain systematics

Work in progress

For channels with zero entries an uncertainty of ~ 2 - 3 % for an average gain of ~ 16 ADC/pixel is observed

Saturation correction

Saturation correction for 2668 pixels

Work done by Sascha

 Calculated the effective number of pixels to be 2533 which is 10 % less than the nominal value (2668)

Data samples and selection

Selection applied for both data and simulation

✓ Tiles chosen in X direction: from 70 mm to 80 mm
✓ Tiles chosen in Y direction: from -50 mm to -40 mm
Wire chamber information is used to apply cuts on data

Electron energy	CoG Z direction [mm]	Number of hits
80 GeV Run number: 61156	Between 180 to 280	Between 200 to 300
100 GeV Run number: 61159	Between 200 to 300	Between 250 to 400

<Energy sum> and <number of hits>

Electrons

Electron energy	CoG Z direction [mm]	Number of hits
80 GeV Run number: 61156	Between 180 to 280	Between 200 to 300
100 GeV Run number: 61159	Between 200 to 300	Between 250 to 400

Difference in <energy sum> observed mainly during shower maximum

Beam profiles

80 GeV electron

Beam profiles of data and simulation tuned in close proximity

Hit energy distribution

80 GeV electron

- ✓ Looking into a distribution in our data that is especially sensitive to the effect of saturation
- ✓ Look where large energy is deposited in a single tile (shower maximum of high energy electron showers)
- ✓ 2533 pixels agrees with independent measurement of a SiPM (without tile) with laser light

http://www.desy.de/~opinto/80GeV _Run_61156layer_wise_1to15.pdf

Hit energy for 80 GeV electron - June data

Beam profiles

Electron energy

100 GeV electron

Number of hits

Beam profiles of data and simulation tuned in close proximity

CoG Z direction [mm]

Hit energy distribution

100 GeV electron

Hit energy for 100 GeV electron - June data

http://www.desy.de/~opinto/100GeV_Run_61159layer_wise_1to15.pdf

Gain systematics (work in progress):

The overall uncertainty ~0.13 for an average gain of ~ 16 ADC/pixel

Saturation:

The number of effective pixels looks reasonable, differences in the shapes needs to be understood

Fit uncertainty vs. LED voltage

For entries = 1

Few channels with large fit uncertainty and few with small fit uncertainty

Number of hits vs. center of gravity in Z direction

SiPM saturation

Why saturation and how to correct it?

- ✓ Due to limited number of pixels in SiPM (2668 pixels) and finite pixel recovery time (20 500 ns)
 - ✓ Need to correct the non-linear response of SiPM at high energy deposition
- \checkmark Apply the de-saturation function during reconstruction

Signal _{desaturated} = function _{desaturation} (Signal _{saturated})

Describing saturation

Work done by Sascha

Gain correlation

October PP and June No-PP

Good correlation - gain of AHCAL between two test periods was very stable

Temperature and gain dependence

Gain and temperature variations

- ✓ The temperature of each detector module is monitored by 6 sensors
- ✓ The SiPM breakdown voltage varies with temperature – the gain changes with temperature, too
- \checkmark SiPM gain with temperature compensation
 - ✓ ~ 4% difference in the gain is observed between PP and no PP mode

