Analysis of AHCAL Electron Data

Anna Rosmanitz

CALICE Main Meeting 2019

12.04.2019

2018 Test Beams

- At CERN SPS
- ~ 40 layers in steel stack with 4x144 individually wrapped channels each
- Runs with muons, electrons, and pions with several 10⁷ events
- In May: Runs with and without power pulsing
- June: only power pulsing used

May; e-: Total Energy

- Eventwise sum over hit energies
- Peaks position is expected to scale linearly with beam energy
- Gaussian fits over peaks to determine position

May; e-: Linearity of Total Energy

 Good agreement of noPP and PP within expected precision

Fit	var	iab	les:	

	noPP	PP
offset	-17,8±0,6	-8,7±0,5
slope	39,80±0,01	39,27±0,02

More information:

<u>https://agenda.linearcollider.org/event/8082/#day</u> <u>-2018-12-13</u>; Comparison of the May Electron Data With and Without Power Pulsing

May; e-: Tail of Total Energy

- May electron data has tail of low energy events
- All attempts to remove it unsuccessful
- Beam probably already showering before detector
- Leads to problems with Gaussian fit
- Comparison of data with simulation impossible

June; e-: Linearity of Total Energy

- June data taken with power pulsing
- Good linearity without additional cuts

linearity

June; e-: Simulation

• 9 parameters tuned:

- Beam source: position in x, y, z; beam width in x, y

June; e-: Simulation

- 9 parameters tuned:
 - Beam source: position in x, y, z; beam width in x, y
 - Additional material: position and thickness

June; e-: Simulation

- 9 parameters tuned:
 - Beam source: position in x, y, z; beam width in x, y
 - Additional material: position and thickness
 - Rotation of AHCAL in x and y

June; e-; 10GeV; CoG Z

- CoG Z dependent of material in beam line
 ⇒Check for description of detector material
- Beam is hitting extra material

June; e-; 10 GeV; General Variables

- Number of hits looks fine
- Simulation has more high energy hits
 ⇒Total energy is higher

June; e-; 10 GeV; Problems with Radii

- Hit radius: distance of CoG and hit
- Radius: Mean radius per event
- Energy weighted radius: Eventwise sum over hit radii weighted by energy density

June; e-; 10 GeV; CoG X, Y

- Important for adjusting beam position in simulation
- Challenge: layers not perfectly aligned

Data

June; e-; 10 GeV; New Radii

• Radii now agree well

June; e-; 10 GeV; New General Variables

- nHit distribution agrees well
- CogZ worse
- Total energy still off
- More investigation needed

CALICE Main Meeting 2019 - Anna Rosmanitz

June; e-; 10 GeV; More Material

• Increase material to 5 mm to improve cogZ

radius

Layer1

 ⇒ nHits and radii get worse
 ⇒ 1.93 mm of additional material is fine

0.09

0.07

0.06

0.04

0.02

0.01

cogZ

12.04.2019

June; e-; 10 GeV; LSP; 1.93 mm steel

- Longitudinal Shower Profile for nHits and radius agree reasonably well
- Still some differences
 ⇒ Will improve hopefully with further fine tuning of simulation

Conclusion and Outlook

Conclusion:

- Power pulsing thoroughly tested: improvement in temperature stability with identical performance confirmed
- Good linearity for May and June
- June data suitable for comparison with simulation
- Excellent agreement in radii and number of hits between data and simulation

⇒Radii and number of hits agree well

Outlook:

- Fine tuning of simulation and selection cuts to improve agreement
- Comparison of shower shapes and energy response with simulation

Thank you for your attention!

Backup

Future e+e- Collider

- Future high energy colliders need high energy resolution detectors
- Different concepts:
 - CEPC
 - CLIC
 - FCC

-ILC

 Energy resolution achieved by use of particle flow algorithm

⇒ High granularity needed

ILC

- International Linear Collider (ILC) to investigate properties of Higgs-Boson and top quark, and search for new particles
- Electron-Positron-Collisions at 250 500 GeV

CALICE

- **Ca**lorimeter for **Li**near **C**ollider **E**xperiment (CALICE) Collaboration
- Over 300 members from 17 countries
- Development of ECAL, HCAL and tail catcher/muon tracker
- Test beam activities for over 10 years

Particle Flow Algorithms (PFA)

- PFA uses most precise detector component for measurement of different particles:
 - Tracker: charged particles
 - ECAL: photons
 - HCAL: neutral hadrons
- Resolution degrades when particle clusters overlap
- Highly granular calorimeters neccessary for use of PFA

Oskar Hartbrich - Commissioning and LED System Tests of the Engineering Prototype of the Analog Hadronic Calorimeter of the CALICE Collaboration

Power Pulsing

- New concept tested for ILC
- Detector only switched on when particle bunch arrives
- Possible because of time structure of beam:
 - 1 ms bunch trains at 5 Herz
- Reduces heating and power consumption
 ⇒Allows for compact detector design

 Development of calorimeter prototype: Analogue Hadronic CaLorimeter (AHCAL); Sampling calorimeter

CALICE AHCAL

- Individually wrapped 3 x 3 cm² scintillator tiles
- Read out with SiPMs
- 144 channels form HBU

Technological Prototype

- 40 fully equipped layers with 4x144 channels each
 ⇒~22k channels total
- Mass assembly in a reasonable time (See: A design of scintillator tiles read out by surface-mounted SiPMs for a future hadron calorimeter, Phi Chau)
- Test beams with newly assembled boards with improved design and low noise SiPMs
- Comparison with GEANT4 simulation

Tile assembly at University Mainz

AHCAL Working Principle

- Scintillator tiles produce photons when ionizing particles cross
- Silicon photomultiplier (SiPM) consists of grid of photo diodes
- Photon produces signal in pixel of SiPM:
 - Creates electron-hole pair
 - Charge drifts trough high electric field
 - ⇔ Creates avalache
 - ⇒Signal
 - Probability for creation of electron-hole pair highly dependent of temperature
 - Output is sum over all pixels
 - Number of fired pixels proportional to energy deposited in tile

http://www.sciencedirect.com/science/article/pii/S0168900206021462

Comparison of PP/no PP: CoG Z

- Muons visible in cogZ ⇒ cut at 400 mm
- Shower development similar for both

Longitudinal Shower Profiles

CALICE Main Meeting 2019 - Anna Rosmanitz

Longitudinal Shower Profiles

- Number of hits distributions with and without power pulsing nearly identical (differences of up to <2%) in the first layers
- Fluctuations in later layers higher because of lower statistics
- Energy sum distributions also agree well
- Temperature differences probably resulting from temperature changes in detector ⇒ general shift per layer

Number of Hits Per Event and Energy Per Hit

CALICE Main Meeting 2019 - Anna Rosmanitz