Study of Scintillator Tiles and SiPMs

Malinda de Silva

Max-Planck-Institut für Physik

Motivation

- SiPM-on-tile technology involves a scintillator tile placed on a SiPM to work as an active medium and sensor.
- As SiPM and scintillator are separated, they can be tested and optimized separately to increase light yields
- Objectives of tests
 - Understand impact of mechanical tolerances for SiPM-on-tile
 - Explore further improved SiPMs
- Methodology
 - Test different Scintillator Tiles with different qualities
 - Test different SiPMs

Uniformity Test - Experimental Setup

- Electrons from Sr-90 source scan the tile
- Electrons detected at trigger SiPM/scintillator triggers data collection
- Oscilloscope sampling rate = 1.25 GHz (Oscilloscope sampling interval = 800 ps)
- Test done in a climate controlled 20° C environment
- Scan of 30 mm² square area
 - at 2 mm steps => ~16 hours
 - at 1 mm steps => ~32 hours

Uniformity Test - Analysis

- 600 captures for 1pe signals are taken
 - Pedestal subtracted integral of signals obtained
 - Median value is taken as 1pe signal
- Trigger threshold of ~7pe triggers data taking from SiPMs
 - 1000 captures taken
 - Pedestal subtracted integral of signals obtained
 - Signals with too low integral values rejected
 - Signals above 97th percentile rejected (remove the tail)
 - \circ \qquad Using a Gaussian fit, mean value is taken as signal

Light Viold —	integral of signal
Light Tield –	integral of 1 pe signal

Scintillator Tiles Tested

Tile of CALICE AHCAL technological prototype

Square Polystyrene Tile 30 mm length 3 mm thickness Square BC-408 Tile 30 mm length 3 mm thickness

Tiles produced at Max-Planck-Institut, Munich

Hexagonal BC-408 Tile 14 mm edge length 3 mm thickness

- All wrapped in 3M foil
- Tiles tested using Hamamatsu S13360-1325PE SiPM

- Methodology
 - Shift of scintillator tile position in 100 um steps in x and y directions and compare light yields 0
 - Average light yield 0
 - For square 3x3 cm² tiles average of light yields in 25x25 mm² center
 - For hexagon of length 1.4 cm average of light yields in 14x14 mm² center н.
- - Calculation of misalignment in position 0
 - Misalignment (r) = $\sqrt{(x_{\text{SiPM center}} x_{\text{tile center}})^2 + ((y_{\text{SiPM center}} y_{\text{tile center}})^2)^2}$
 - Calculation of Light yield (LY) asymmetries 0
 - $LY_{asym}(top-bottom) = LY_{top} LY_{bottom}$

6

- Methodology
 - Shift of scintillator tile position in 100 um steps in x and y directions and compare light yields 0
 - Average light yield 0
 - For square 3x3 cm² tiles average of light yields in 25x25 mm² center
- For hexagon of length 1.4 cm average of light yields in 14x14 mm² center
 - Calculation of misalignment in position 0
 - Misalignment (r) = $\sqrt{(x_{\text{SiPM center}} x_{\text{tile center}})^2 + ((y_{\text{SiPM center}} y_{\text{tile center}})^2)^2}$
 - Calculation of Light yield (LY) asymmetries 0
 - $LY_{asym}(top-bottom) = LY_{top} LY_{bottom}$

CALICE Meeting - Utrecht

- Observations
 - As calliper pushes the tile towards the dimple center, light yield asymmetry decreases 0

8

- Observations
 - As calliper pushes the tile towards the dimple center, light yield asymmetry decreases

x=0 mm, y=-1.5 mm

x=+0.1 mm, y=-1.0 mm

Malinda de Silva

9

Light Yield Asymmetry vs Misalignment in Hexagon

- Average Light Yields taken from top, bottom, left and right halves of the hexagon
- Changes in average light yield in left and right halves observed as x position changes
- Changes in average light yield in top and bottom halves observed as y position changes

• Preliminary results for square tiles show similar trend

Average Light Yield vs Misalignment

- Average Light yield calculated by taking arithmetic average of light yield
 - For square 3x3 cm² tiles average of light yields in 25x25 mm² center
 - For hexagon of length 1.4 cm average of light yields in 14x14 mm² center
- Average Light yield not affected by the misalignment of the tile
- True for both hexagon and square tiles

0

0

Silicon Photomultipliers Tested

- New generation of MPPCs (HDR2 prototype) => high dynamic range
- Hamamatsu S13360-1325PE specs
 - Effective photosensitive area 0
 - 25µm pitch 0
 - Breakdown Voltage 0
 - Gain 0

S13360-1325PE

- $= 1.3 \times 1.3 \text{ mm}^2$
- = 2,668 cells
- $= 53 V (20^{\circ} C)$
- $= 7.0 \times 10^{5}$

- Hamamatsu S14160 MPPC series specs
 - Effective photosensitive area = $1.3 \times 1.3 \text{ mm}^2$ 0
 - Breakdown Voltage = $38 V (20^{\circ} C)$ 0
 - S14160-1310PS 0
 - $10\mu m pitch = 16,675 cells (~~6 x dynamic range)$.
 - Gain $= 1.8 \times 10^4$ н.
 - S14160-1315PS \bigcirc
 - 15μ m pitch = 7,296 cells (~2.5 x dynamic range) $= 3.6 \times 10^4$
 - Gain

S14160-1315PS

S14160-1310PS

Comparison of SiPMs using Polystyrene Tile

- Test done in a climate controlled 25° C environment using manufacturer supplied SiPM breakdown voltages (Vbr)
- Using CALICE AHCAL square polystyrene tile
- Newer SiPMs require an additional signal amplifier: lower gain due to smaller pixel capacitance

Light Yield and Photon Detection Efficiency (PDE) in Polystyrene vs Overvoltage

Comparison of SiPMs using Polystyrene Tile

- Test done in a climate controlled 25° C environment using manufacturer supplied SiPM breakdown voltages (Vbr)
- Using CALICE AHCAL square polystyrene tile
- Newer SiPMs require an additional signal amplifier: lower gain due to smaller pixel capacitance

Comparison of SiPMs using Polystyrene Tile

- Test done in a climate controlled 25° C environment using manufacturer supplied SiPM breakdown voltages (Vbr)
- Using CALICE AHCAL square polystyrene tile
- Newer SiPMs require an additional signal amplifier: lower gain due to smaller pixel capacitance

Comparison of SiPMs using BC408 Tile

- Test done in a climate controlled 25° C environment using manufacturer supplied SiPM breakdown voltages (Vbr)
- Using CALICE AHCAL square polystyrene tile
- Newer SiPMs require an additional signal amplifier: lower gain due to smaller pixel capacitance

Current SiPM in use in AHCAL

New SiPM with 15 um pitch New SiPM with 10 um pitch

- 15 um pitch SiPM gives light yields comparable to current SiPM in use in AHCAL.
- Correlation of PDE within new series
- Correlation with PDE in old and new series not yet understood
- Higher light yield in BC-408 tiles also observed

Effects of Fill Factor on Light Yield in SiPMs

- Fill factor = Active area in SiPM/Total area in SiPM
- Photon Detection Efficiency (PDE) = (Quantum Efficiency) x (avalanche probability) x (fill factor)
- Fill factor in values
 - **S13360-1325PE 47**%
 - **S14160-1310PS** 31%
 - **S14160-1315PS** 49 %
- Plot the light yields after removing the effects of fill factor (fill factor set to 1)
- Black dots = Recommended overvoltages for SiPMs by Hamamatsu

• Observed relative light yield changes approximately track the differences in fill factor between different devices

New SiPM-on-Tile Sensor and Receiver System

- System developed for the CLAWS detector in Belle2 experiment (SuperKEKB) in Japan
- New sensor board
 - SiPM-on-Tile wrapped
 - On board pre amplifier
 - Single ethernet connector for
 - 3x power (SiPM, preamp, differential amplifier)
 - Signal (sends as differential signal)
 - Ethernet cable CAT 6A or higher needed
 - for signal transmission at frequencies up to 500 MHz
 - To transmit HV up to 60 V
- New Receiver board
 - Capable of powering 16 SiPMs parallelly
 - On board differential amplifier combines the differential signal
 - Sends the signal through BNC output

New SiPM-on-Tile Sensor and Receiver System - Belle2

- System developed for the CLAWS detector in Belle2 experiment (SuperKEKB) in Japan
 - Injection background monitor -> CLAWS
- Each of 32 SiPM-on-tile sensors contains a Hamamatsu S13360-1325PE SiPM with BC-408 wrapped scintillator tile
- Sensor modules attached around final focussing magnet
- 30 m long ethernet cables connect sensor to receiver board
- Power supplied by external power source Final Focussing Magnets

~ 3 m

Updated New SiPM-on-Tile Sensor and Receiver System

- Created as a spin-off of the CLAWS system
- New sensor board
 - Identical to CLAWS system
- New Receiver board
 - Capable of powering 4 SiPMs
 - Power supplied by Hamamatsu C11204 on-board power supply
 - Steered by computer through USB (Python script)
 - Stable power source
 - Includes BNC outputs for data acquisition
- Can be used in laboratory experiments involving MIP detection as well as for student internships and exhibitions in the institute
- Now used by Hamamatsu in their booths at conferences and exhibitions

Updated New SiPM-on-Tile Sensor and Receiver System

- Created as a spin-off of the CLAWS system
- New sensor board
 - Identical to CLAWS system
- New Receiver board
 - Capable of powering 4 SiPMs
 - Power supplied by Hamamatsu C11204 on-board power supply
 - Steered by computer through USB (Python script)
 - Stable power source
 - Includes BNC outputs for data acquisition
- Can be used in laboratory experiments involving MIP detection as well as for student internships and exhibitions in the institute
- Now used by Hamamatsu in their booths at conferences and exhibitions

Hamamatsu Power Supply

Updated New SiPM-on-Tile Sensor and Receiver System

- Single ethernet connector for
 - 3x power (SiPM, preamp, differential amplifier)
 - Signal (sends as differential signal)
- Low noise gain through ethernet shielding
 - Ethernet cable maintains signal-noise ratio
- Possible to transfer signal across long distances
 - Signal arriving at receiver board is amplified

- Single ethernet connector for
 - 3x power (SiPM, preamp, differential amplifier)
 - Signal (sends as differential signal)
- Low noise gain through ethernet shielding
 - Ethernet cable maintains signal-noise ratio
- Possible to transfer signal across long distances
 - Signal arriving at receiver board is amplified

- Single ethernet connector for
 - 3x power (SiPM, preamp, differential amplifier)
 - Signal (sends as differential signal)
- Low noise gain through ethernet shielding
 - Ethernet cable maintains signal-noise ratio
- Possible to transfer signal across long distances
 - Signal arriving at receiver board is amplified

- Single ethernet connector for
 - 3x power (SiPM, preamp, differential amplifier)
 - Signal (sends as differential signal)
- Low noise gain through ethernet shielding
 - Ethernet cable maintains signal-noise ratio
- Possible to transfer signal across long distances
 - Signal arriving at receiver board is amplified

Conclusions

- Misalignment of SiPM and scintillator tile center
 - Negligible impact on the average light yield.
 - Misalignments under 200 um from center gives low asymmetry of light yield
- Comparison of silicon photomultipliers
 - Hamamatsu S14160-1315PE exhibits same light yield as S13360-1325PE for 2.5 x increased dynamic range.
 - Manufacturer supplied photon detection efficiencies correlated well with measured average light yields for newer Hamamatsu S14160 series SiPMs
 - Deviation in average light yield in S13360-1325PE from manufacturer given photon detection efficiency still in the process of understanding observations
- New SiPM-on-tile sensor and receiver system successfully made, tested and now operational at the Belle2 detector in Japan
 - A spin-off system tested and implemented as a demonstration board capable of powering using a single USB cable and python script

Conclusions

- Misalignment of SiPM and scintillator tile center
 - Negligible impact on the average light yield.
 - Misalignments under 200 um from center gives low asymmetry of light yield
- Comparison of silicon photomultipliers
 - Hamamatsu S14160-1315PE exhibits same light yield as S13360-1325PE for 2.5 x increased dynamic range.
 - Manufacturer supplied photon detection efficiencies correlated well with measured average light yields for newer Hamamatsu S14160 series SiPMs
 - Deviation in average light yield in S13360-1325PE from manufacturer given photon detection efficiency still in the process of understanding observations
- New SiPM-on-tile sensor and receiver system successfully made, tested and now operational at the Belle2 detector in Japan
 - A spin-off system tested and implemented as a demonstration board capable of powering using a single USB cable and python script

Thank you for your attention!

Backup - Photon Response of SiPMs

- Cross talk probability
 - =~1%

 Peak wavelength = 	460 nm
---------------------------------------	--------

Cross talk probability < 1%

Backup - Analysis plots

- Example plot of light yields fitted as Gaussian
- Trigger threshold of ~7pe triggers data taking from SiPMs
 - 1000 captures taken
 - Pedestal subtracted integral of signals obtained
 - Signals with too low integral values rejected
 - Signals above 97th percentile rejected (remove the tail)
 - Using a Gaussian fit, mean value is taken as signal

