FOCAL PAD R&D

Marco van Leeuwen, Nikhef, UU on behalf of the FOCAL collaboration

The FOCAL proposal

$$3.2 < \eta < 5.3$$

(baseline design @ 7m)

FoCal-E: high-granularity Si-W calorimeter for photons and π^0 **FoCal-H**: hadronic calorimeter for photon isolation and jets

- π^0
- Direct (isolated) photons
- Jets

Advantage in ALICE: forward region not instrumented; 'unobstructed' view of interaction point

FOCAL-E design concept

Goal/idea: build modules with 3 'towers'
Minimize gaps between towers
Stacked vertically into 'slabs'

PAD layers + pixel layers for position resolution

Overall conceptual design is settled/understood

Layout concept for pixel layer

6x9 ALPIDE sensors (2 or 3 layers)

PAD module prototype

3 sensors: ~9x8 cm

PAD readout requirements

- Large dynamic range: 1 MIP to 2 TeV
 - · 3 fC 5 pC
- Good linearity/precision
 - · Aim to achieve 1% energy resolution at high end; need few per cent resolution per pad
- Rate: expect to read out at up to 1 MHz in pp, p-Pb
 - Can be untriggered; event selection in HLT
 - LHC: 40 MHz bunch spacing
- Radiation: expected load 100-1000x smaller than ATLAS/CMS; does not seem to be critical

Options for PAD readout ASIC

Two approaches: ADC+TDC (HGCROC) or two ADCs with dual range setup

· HG-CROC:

- Under development by CMS for this purpose; time line tight
- ADC for small signals (< 100 MIP) + TDC for large signals

SAMPA

- Developed for ALICE TPC, MUON arm; available
- Would need dual-range readout with attenuation

VMM

- Developed for ATLAS 'small wheels'; a version is available, not fully tested
- Would near dual-range readout with attenuation

Still under discussion; several options pursued in parallel

Design question: Distance between W layers

Distance between layers dictated by placement of electronics

Electronics outside layer

Electronics inside layer

Advantage: compact detector, small Molière radius, good spatial resolution

Disadvantage: long signal cables; risk of noise, cross-talk

Advantage: shorter signal paths; good signal integrity Disadvantage: worse spatial resolution; cooling may be challenging

Expect effect on Molière radius, two-shower separation Performing simulations to understand the effect

PAD prototypes

Activity in India: VECC, Kolkata and BARC Mumbai

HV connector Connector for kapton cable to FEE boards

Bias resistors and capacitors

Pad sensor and analog readout development: ANUINDRA

Large dynamic range achieved

Resolution under study

Challenge: pad-by-pad calibration/response

PAD Prototypes

Pads connected to flex PCB

Large activity in Japan (Tsukuba)

Several test runs; design approaching final geometry

Hit Map from test run in ALICE

Pad sensors: Hamamatsu

Readout: currently APV (limited range)

testing new readout options

Summary/conclusions

- FOCAL conceptual design: pad + pixel sensors
- Pad sensor and readout development ongoing
- Test beam to finalise design, test performance
 - · Results being analysed
- Various solutions for ASIC under consideration:
 - · HGCROC
 - SAMPA
 - VMM
- Design question: inter-layer distance and effective Molière radius
 - Under study

Thank you for your attention

Pad sensor and readout development

Silicon Pad Detectors

PIXEL prototypes

Full pixel - MIMOSA tower

39M pixels

10

Energy (GeV)

ALPIDE developments

Energy resolution:

$$\frac{\sigma}{E} = \frac{30}{\sqrt{E(GeV)}} + \frac{6.3}{E(GeV)} + 2.8$$

JINST 13 (2018) P01014