FoCal Physics Case and Basic Design

T. Peitzmann (Utrecht University/Nikhef)

CALICE Collaboration Meeting, Utrecht, 10.04.2019

Outline

- Introduction: low-x PDFs and gluon saturation
- PDF studies in pA with photons
- The FoCal Proposal

H1+ZEUS PDFs and Gluon Saturation

- from evolution equations (DGLAP, BFKL):
 - gluon density increases with Q² and 1/x
 - leads to very high gluon density
 - problems with unitarity
- for high density non-linear processes become important
- gluon saturation below saturation scale
- \cdot enhanced in nuclei

$$Q_{\rm S}^2(x) \approx \frac{\alpha_{\rm s}}{\pi R^2} x G\left(x, Q^2\right) \propto A^{1/3} \cdot x^{-\lambda}$$

- signatures in hadronic collisions:
 - suppression of particle yields
 - dijet suppression

Uncertainties in Nuclear PDFs

EPPS16, EPJC 77, 163

- - parameterised nuclear modification
 - recently updated to allow more freedom (e.g. flavour dependence)
- x-dependence?
 - very little dependence for $x < 10^{-2}$

LHCB, JHEP 10 (2017) 090

Results from p-Pb at LHC (2)

- prompt D⁰ suppressed at forward rapidity
 - consistent with pQCD + shadowing (EPS09)
 - also consistent with CGC calculation

Hadronic Processes

- hadron production needs fragmentation
 - other hadronisation mechanisms (coalescence)?
 - strong disadvantage for light hadrons
- heavy flavour
 - + J/ ψ not fully understood
 - open charm?

 possible other final-state modifications: energy loss, collective flow

Electromagnetic Processes

g

direct- γ , Compton (LO)

- processes
 crossing symmetry
 sensitivity to gluons only at NLO
 - e.g. virtual qg-Compton
 - main disadvantage of DY: very low cross section

DIS and Drell-Yan are equivalent

not accessible in pA

- real photons: sensitivity to gluons at LO, clear kinematic relation
 - higher order corrections?

7

Accessing small x – Kinematics

• for $2 \rightarrow 2$ process (LO on parton level):

$$x_{1,2} = \frac{M}{\sqrt{s}} \exp\left(\pm\frac{y_3 + y_4}{2}\right)$$

- forward rapidity selects small x
- advantage for exclusive measurement
- for singles assume:

$$x_{1,2} \approx \frac{2m_T}{\sqrt{s}} \exp\left(\pm y\right)$$

- valid for jets (large m_T) and photons
- for hadrons take fragmentation into account!
- further modification via higher order contributions
 - significant at LHC
- limited data so far!

EM probes - kinematic coverage

x-Q²-Sensitivity

PYTHIA pp 8.8TeV forward measurements

LHCb D0 vs FoCal photons

study median of distribution and 90% confidence level limits

better sensitivity for photons

uncertainties of theoretical description at very low $p_{\rm T}$

Low-x Probes

- Open charm and photons apparently most sensitive probes
- Some advantages for photons
- Charm measurements possible with existing LHCb apparatus
- Photons provide complementary measurement
- Not possible with existing experiments
 - need new detector!

FoCal in ALICE

electromagnetic calorimeter (FoCal-E) for γ and π^0 measurement

preferred scenario:

- at $z \approx 7m$ (outside solenoid magnet) 3.3 < η < 5.3
- add hadronic calorimeter (FoCal-H)

under internal discussion possible installation in LS3

advantage in ALICE: forward region not instrumented, "unobstructed view"

- main challenge: separate γ/π^0 at high energy
- need small Molière radius, high-granularity read-out
 - Si-W calorimeter, effective granularity $\approx 1 \text{ mm}^2$

note: two-photon separation from π^0 decay ($p_T = 10 \text{ GeV}/c$, y = 4.5, $\alpha = 0.5$) is d = 2 mm!

Impact of Forward Photons on nPDFs

Performance estimate of FoCal measurement uncertainty of nPDFs without/with FoCal J. Rojo et al, priv. comm., $R_{\rm pPb}$ arXiv 1610.09373,1706.00428,1802.03021 **ALICE** projection NNPDF3.1 NNLO, $Q^2 = 5 \text{ GeV}^2$ FoCal upgrade DIS+DY baseline 1.8 *converted* DIS+DY baseline + FoCal 1.6 g(x,Q²)/g(x,Q²)[ref] 0.8 0.6 0.5 p-Pb $\sqrt{s_{NN}} = 8.8 \text{ TeV}$ Isolated γ 0.4 $4.0 < \eta < 5.0$ EPPS16+CT14 $L = 50 \text{ nb}^{-1}$ 0.2 00 0 15 5 10 20 10^{-3} 10⁻² X 10⁻¹ 10^{-4} $p_{_{T}}$ (GeV/c)

ALI-SIMUL-313019

Uncertainties can be improved significantly

Still some discussion ongoing: choice of $\Delta \chi^2$, effect of DGLAP evolution, shape of parameterisation

Work in progress!

FoCal-E – Detector Module

hybrid design (2 types of sensors)

- Si-pads (≈ 1 cm²): energy measurement, timing(?)
- CMOS pixels (≈ 30x30 µm²): two-shower separation, position resolution

FoCal-E Design Concept

goal/idea: build modules with 3 towers

minimize gaps between towers

stacked vertically into slabs

Pixel R&D - Example

calculate difference of position from

- cluster in layer 0 and
- center of gravity of shower in layers 1 - 23

single shower position resolution obtained from width of residuals

can also provide excellent two-shower separation

New Prototype: mTower

- Currently building new prototypes based on the ALPIDE MAPS
 sensor that is developed for the new ALICE Inner Tracking System
- New prototype mTower
 - Small digital calorimeter (3x3 cm²) with 24 layers of 2 ALPIDE sensors and 3 mm W
 - Allows to test the performance of the ALPIDE in a calorimeter
 - Provides input into the FoCal design parameters
 - Allows to study particle showers in detail

ALPIDE

- Monolithic Active Pixel Sensor
- Chip size: 30.00 mm x 15.00 mm
- Pixel matrix: 1024 x 512
 (=524288 pixels / chip)
- Active area: 29.94 mm x 13.76 mm
- Pixel size: 29.24 μm x 26.88 μm
- Hit driven readout
- Readout speed: 400 Mb/s 1.2
 Gb/s
- Power consumption proportional to the occupancy.

MiniFoCal – FoCal Module Prototype

- MAPS layers design ready
- Mechanical tests ongoing (gluing, cooling, etc.)
- First functional 9-string (2 chips mounted) tested, some performance issues, revision of chip cable design ongoing
- PADS have been tested in ALICE cavern

Summary

- Large uncertainties in low-x parton density
 - hints for gluon saturation, no proof!
- Opportunity for forward photon measurement
 - complementary information to open charm
 - possibly cleaner signal
 - main observable: direct photon R_{pA}
 - study also correlations (needs more theory work)
- FoCal proposal in ALICE
 - unique information from forward photons in pp and pA
 - needs extremely high-granularity EM calorimeter
 - ongoing R&D on SiW with pixel and pad sensors

Backup Slides

- qualitatively consistent with CGC, but ...
 - very low pT, close to kinematic limit,

hadron observable (final state interactions)!

• extend p_T and y range (not possible at RHIC)

Main Physics Motivation for FoCal (A Hierarchy)

1. prove or refute gluon saturation

- compare saturation models with linear QCD
- depends on saturation model implementation and flexibility of PDF analytical shape
- 2. show invalidity of linear QCD at low x
 - $\cdot\,$ can all potential measurement outcomes be absorbed in a modified PDF?

3. constrain the PDFs at low x

- nuclei, also protons
- main observable: nuclear modification factor R_{pA} of direct photons
 - $\boldsymbol{\cdot}$ saturation stronger in nuclei
 - possibly non-existent in protons (calculation of reference in models?)

Kusina et al., arXiv:1712.07024

Recent: PDF Fits Using Charm

- open charm used in re-weighting
 - significant reduction of uncertainties
 - significant suppression on the low side of current PDFs
 - significant pQCD uncertainties (scale, fragmentation)
 - relies on shape of parameterisation:

very little *x*-dependence at low *x*!

Final-State Modification of Open Charm in p-A?

- mechanism for modifications still unclear, possibly final-state interaction!
- relation between initial- and final-state kinematics may be obscured
- introduces additional systematic uncertainty

ALICE, JHEP 07 (2018) 160

Results from p-Pb at LHC (1)

Ma, Venugopalan, Zhang, arXiv:1503.07772

- nuclear modification factor
 RpPb for charmonium
- J/ψ suppressed at forward rapidity
 - can be described by very different theoretical calculations
- additional uncertainties from hadronisation?
 - e.g. uncertainties in CGC model due to population of different quantum states
- not conclusive

True x-Sensitivity?

	$\sqrt{s} ({\rm TeV})$	y	$p_T ({\rm GeV}/c)$	z	x_2
π	0.2	4	2	0.3	$1.2 \cdot 10^{-3}$
π	8.8	0	2	0.3	$1.5 \cdot 10^{-3}$
jet	8.8	4	20	1	$8.3 \cdot 10^{-5}$
π	8.8	4	2	0.3	$2.8 \cdot 10^{-5}$
D	8.8	4	0	0.5	$1.5 \cdot 10^{-5}$
γ	8.8	4	4	1	$1.7 \cdot 10^{-5}$
γ	8.8	4.5	4	1	$1.0 \cdot 10^{-5}$

$$x_{1,2} \approx \frac{2m_T}{\sqrt{s}} \exp\left(\pm y\right)$$

 LO kinematics estimates provide rather lower limit for x₂

- but: higher orders contribute
 significant tail towards large x₂
- compare D⁰ (LHCb) and prompt γ (FoCal)
- expect better sensitivity for photons

no analytical approximation, taking into account η of recoil parton

Hiroki Yokoyama

x-Q²-Sensitivity

PYTHIA pp 8.8TeV forward measurements

LHCb D0 vs FoCal photons

study median of distribution and 90% confidence level limits

better sensitivity for photons

x-Q²-Sensitivity

PYTHIA pp 8.8TeV forward measurements

LHCb D0 vs FoCal photons

study median of distribution and 90% confidence level limits

The FoCal Proposal

 $3.2 < \eta < 5.3$ (baseline design @ 7m)

FoCal-E: high-granularity Si-W calorimeter for photons and π^0 **FoCal-H**: hadronic calorimeter for photon isolation and jets

Observables:

- π⁰
- Direct (isolated) photons
- Jets

Advantage in ALICE: forward region not instrumented; 'unobstructed' view of interaction point

MIMOSA Prototype

calorimeter stack of 24x2 half layers equipped with MIMOSA CMOS pixel sensors

half layer with two sensors and 1.5mm W

two half layers mounted together with opposite orientation to minimise dead areas

total layer thickness $\approx 1 X_0$

full active layer with readout boards within 1mm

A: MIMOSA sensor B: PCB C: tungsten

extremely compact design

allows for high pixel density and small Moliere radius

mTower Layers

- Layer: W absorber and two ALPIDE chips
- Thin, compact cabling to keep small Molière radius
 - Chip-cable and multilayered flex for connection (LTU Charkov)

x-Dependence of PDF modification

 $x \leq x_a$

 $x_a \le x \le x_e$

 $x_e \le x \le 1$

EPPS16, EPJC 77, 163

$$R_i^A(x,Q^2) = \begin{cases} a_0 + a_1(x - x_a)^2 \\ b_0 + b_1 x^{\alpha} + b_2 x^{2\alpha} + b_3 x^{3\alpha} \\ c_0 + (c_1 - c_2 x)(1 - x)^{-\beta} \end{cases}$$

- parameterisation of R_A
 - shape similar to EPS09
 - at low x leads to "plateau" in log(x)

more flexible PDF
 used for LHeC
 estimates

EPPS16

small-x shadowing

 10^{-3}

antishadowing maximum

 $\begin{array}{c} H_{i}^{A}(x,Q_{0}^{2})\\ 1.1\\ 1.1\\ 1.1\end{array}$

1.0

0.9

0.8

0.7

0.6

0.5

0.4

 10^{-4}

Helenius, Paukkunen, Armesto, arXiv:1606.09003

 x_a

EMC minimum

 10^{-1}

 10^{-2}

 x_e

 y_a

 y_e

 y_0