Simulation Studies for a Highly Granular Calorimeter in DUNE. CALICE Collaboration meeting Utrecht

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Eldwan Brianne DESY Hamburg, 12th April 2019

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- **1. The DUNE experiment**
- **2. Optimisation studies**
- **3. Neutron energy reconstruction**
- 4. Outlook and Conclusion

Page 2

The DUNE experiment. A neutrino experiment

The experiment

- Observe and measure lepton CP violation
- Determine the neutrino mass hierarchy \bullet
- Study neutrinos from supernovas
- Search for proton decay ullet

The detectors

- Far detector (observe neutrino oscillations) ullet
 - ~4 x 10 kT LAr TPC (single/dual phase)
 - Prototypes (ProtoDUNE) running at CERN \bullet
 - 1300 km baseline \bullet
- Near detector \bullet
 - LAr TPC + Magnetized multi-purpose detector (HPgTPC + ECAL) ullet
 - Concept and technologies still under studies \bullet

The goals for the ND ECAL. **Physics requirements**

- The role of the ND is to provide constraints on systematics: beam lacksquareenergy spectrum, beam composition, model v-Ar interactions...
 - Rich physics potential! \bullet
- The role of the ECAL \bullet
 - Primarily needed to reconstruct photons / electrons (identify ${\bullet}$ neutral pions and electrons from NC, CC events)
 - Good *energy resolution* needed over a broad range of energies from few MeV to few GeV
 - Reconstruction of the π^0 energy and association to decay vertex ullet
 - Angular resolution \bullet
 - Identification of neutrons coming from v-Ar interactions lacksquare
 - Precise timing for ToF measurement
 - Help in **background rejection** (reject events outside the TPC/ \bullet coming from the ECAL)
 - Additional: Particle catcher + muon id/tracker for the LArTPC
- A case for a highly granular ECAL!

•

HPgTPC+ECAL in magnet

10 nu-interaction per spill (~x4 more than expected)

Optimisation studies.

Eldwan Brianne | CALICE Collaboration meeting Utrecht | 12/04/2019

Previous Studies. First detector concept

- **First simulation studies** have been done at MPP/Mainz in the last years (Lorenz Emberger/Jan Schaeffer)
- First rough concept implemented in Geant4
 - Sampling calorimeter based: 1.8 mm Pb absorber + 1 cm plastic scintillator
- Studies of calorimeter performance \bullet
 - **2D/3D segmentation** of the active material study of the benefits of granularity
 - **Influence of the absorber** material, thickness
 - Influence of the pressure vessel lacksquare
 - **Neutral pion** identification and vertex reconstruction
 - **Neutron detection** efficiency
- Provided first **understanding** of the capabilities of such concept \bullet and dependency of the performance on some parameters
- -> See Lorenz's CALOR talk: <u>https://indico.cern.ch/event/642256/</u> \bullet contributions/2958338/attachments/1653183/2645330/ DUNE ECAL CALOR.pdf

Page 6

Towards a more realistic detector. Geometry and integration with GArSoft

- Need to integrate into a **common software framework** GArSoft (software developed for HPgTPC based on LArTPC software)
- More *realistic ECAL* geometry (cubic me octagonal)
- Full granularity *excessive channel count for necessary* (shown in former study)
 - **Combine** high granularity layers (HG) using SiPM-on-tile and low granularity layers with strips (LG) - crossed on same layer or every consecutive layer

Optimisation goals. Taking into account the physics

- <u>Goals</u>: \bullet
 - Optimisation of the overall design guided by former results
 - Optimisation of the **cost**: absorber/scintillator material, channel count.. etc...
 - Main design driver **calorimeter energy resolution**, **angular resolution**, **neutron detection!**
- **Design (inside pressure vessel)**: \bullet

 - Setup D (blue) \rightarrow 8 HG + 12 LG, 2 mm Cu + 35 LG, 4 mm Cu, 10 mm Sc \rightarrow thinner absorber in front layers \bullet
 - \bullet
 - Setup F (orange) \rightarrow 8 HG, 3 mm tile + 100 LG, 2 mm Cu, cross-layers, 5 mm Sc \rightarrow thinner HG tile \bullet

Setup A (light pink) \rightarrow 80 HG, 5 mm tile \Rightarrow sanity check with Lorenz Emberger's results (fully granular ECAL) **Setup B** (purple) \rightarrow 8 HG, 5 mm tile + 97 LG, 2 mm Cu, cross-layers, 5 mm Sc \Rightarrow **Granularity for the back layers** Setup C (red) \rightarrow 8 HG + 47 LG (HG: 2mm Cu/LG: 4 mm Cu), cross-strips, 10 mm Sc \Rightarrow Sc/absorber thickness Setup E (green) \rightarrow 8 HG, 10 mm Sc + 92 LG, 2 mm Cu, cross-layers, 5 mm Sc \rightarrow thinner absorber for LG layers

> Color index used as legend for the following plots

Simulation studies. Influence of the granularity

- Change of the granularity of the back layers \bullet
- Using strips with WLS crossed perpendicularly \bullet between layers

Page 9

Simulation studies. Influence of the granularity

- Change of the granularity of the back layers \bullet
- Using strips with WLS crossed perpendicularly \bullet between layers
- Slight improvement of the energy resolution ~5-10% \bullet \rightarrow more layers \rightarrow less leakage
- Angular resolution not much affected (~2%) by using \bullet strips instead of tiles inviable option to reduce channel count!

Simulation studies. Influence of the absorber thickness

- Change of the absorber thickness \bullet
 - 2 mm Cu for HG layers \bullet
 - 2/4 mm Cu for LG layers \bullet

Simulation studies. Influence of the absorber thickness

- Change of the absorber thickness \bullet
 - 2 mm Cu for HG layers
 - 2/4 mm Cu for LG layers
- Energy resolution mostly affected by \bullet
 - change in ratio scintillator thickness / absorber thickness sampling fraction
 - Leakage
- Angular resolution is slightly affected depending on the \bullet configuration
 - Mainly dominated by front layers
 - \rightarrow thinner absorber in the front layers \implies shower evolves deeper in the calorimeter, gives better lever arm on the direction

Page 12

Simulation studies. Influence of the scintillator thickness

- Change in scintillator thickness for the front layers \bullet
 - 3, 5 and 10 mm lacksquare
- Overall, not much change except at low energies \bullet

Simulation studies. Influence of the scintillator thickness

- Change in scintillator thickness for the front layers
 - 3, 5 and 10 mm
- Overall, not much change except at low energies
- Change most significant for 3 mm tiles especially at low energies is effect of the threshold
- Better angular resolution for thicker tiles
 - → Mostly due to the PCA that favours large energy deposits

14

Simulation studies. Influence of the pressure vessel

- Look at the influence of the pressure vessel \bullet
 - Case if the ECAL is fully outside the PV \rightarrow easier \bullet from the engineering side
- Different thicknesses \bullet
 - **0.5**, **1** and **2** X_0 of steel \bullet
- Until when the pressure vessel becomes a significant \bullet problem?
- Angular resolution get slightly affected over 1X₀ \bullet
- Energy resolution gets heavily affected me pressure \bullet vessel should stay below 1 X₀ to keep energy resolution below 6% / Sqrt(E)

0.2

0.4

0.6

0.8

1.2

1.6

Simulation studies. **Full comparison**

- Full comparison between the setups •
- To take away \bullet
 - Angular resolution dominated by front layers \rightarrow \bullet granularity in the back layers does not matter much strips can be used
 - Thinner absorber with small Molière radius in the front is preferred for angular resolution
 - Shower containment is important for high energies me more layers or thicker absorber in the back
 - Thicker scintillator in the front helps in the angular resolution

Real considerations.

Trade between performance, cost, feasibility...

- Limited space: place inside the pressure vessel? Mechanically possible?
- Cost: scales with size of the TPC, number of layers and granularity
- Fixed-target style is different ECAL modules upstream/downstream \bullet

	DS Segments (3)	US Segments / Endcap (7)
HG Layers (0.5 cm of Sc)	8	6
HG Tile size	2.5 x 2.5 cm ²	2.5 x 2.5 cm ²
HG Absorber thickness (Cu)	2 mm	2 mm
LG Layers	72	54
LG strip width (0.5 cm of Sc, crossed)	4 cm	4 cm
LG Absorber thickness (Cu)	2 mm	2 mm
Total thickness	11 X ₀	9 X ₀
Number of channels	~ 2.8 - 3 M	
Copper volume	~ 31.8 m ³	
Sc volume	7 m³ (tiles) - 63 m³ (strips)	
Fiber length	~ 320 km	

Neutron energy reconstruction.

Eldwan Brianne | CALICE Collaboration meeting Utrecht | 12/04/2019

Motivation. **Pushing the limits**

- **Neutron production** for anti/neutrinos on Ar target is highly uncertain \bullet
- Moreover, neutron energy is a source of *neutrino energy mis-reconstruction*
- Neutron energy measurement: \bullet
 - **Time of flight** (ToF) by measuring the time between the production vertex and the located hit \bullet
 - Technique demonstrated in simulation with the 3DST (full scintillator-based detector)
 - Technique can be used with the ECAL \bullet
 - Need for *precise time measurement* (sub-ns)
 - Advantage Implever arm with the ECAL (~3 m from TPC center)
 - **Challenge** heed to identify hits that belong to a neutron!

How to identify neutron hits? Proton recoil

- In order to get a good energy measurement
 - Need to identify the first neutron interaction from a proton recoil
- Study by Chris Marshall (Berkeley) of typical proton recoil kinetic energies
 - between 2-10 MeV
 - seem *independent* to the incoming neutron energy
 - dependent of the simulation model... Geant4/MARS give different results - being investigated
- In general mathematic need to be sensitive to isolated hits of few MeV

Neutron energy reconstruction. **ToF technique**

- **First interaction** missed **travel** distance under- \bullet estimated
- **Scattered neutron** is slower **ToF** is over-estimating the \bullet initial neutron kinetic energy
- In the ECAL case: \bullet
 - Due to passive absorber more chance to have lacksquarescattered neutrons
 - Expect low left tail in the energy reconstruction
- Sensitive parameters: \bullet
 - Amount of H is thickness active material \bullet
 - **Absorber thickness** / material Z \bullet

Parameters for this preliminary study. Setup

- Single neutron gun placed at ~3m or ~1m from the ECAL front face \bullet
- ECAL model \bullet
 - Outside the pressure vessel (0.5 X₀ of Al) \bullet
 - 80 layers: 8 HG layers with 2 mm Cu + 5 mm Sc + 1 mm FR4, 72 LG layers with 2 mm Cu + 5 mm Sc ${\bullet}$
- Looking at two levels \bullet
 - Simulation level is geant4 step \bullet
 - **Reconstruction level reconstructed calorimeter hit** \bullet
- Assumes 250 ps time resolution (KLOE-like) \bullet
- Requirements: \bullet
 - First hit in time with **at least 2 MeV** of deposited energy \bullet
- Classified as **first interaction** / **scatter** based: \bullet
 - On the distance between the primary neutron endpoint and the reconstructed hit (d < 6 cm \sim 2-3 tiles) \bullet
 - On the true MC information (trackID daughter/mother relationship)

Page

22

Efficiency versus kinetic energy. How good can we detect a neutron hit

- Efficiency for 80 layers \bullet
- Top: Reco-Level Bottom: Sim-level
- Discrepancy between sim and reco efficiency \bullet
 - due to hits from gammas due to nuclear deexcitations (prompt and delayed)
 - still need to be worked out \bullet
- In principle, thicker scintillator would improve the efficiency - \bullet especially the first interaction

Page 23

Energy residuals. For 50 MeV neutrons at 300 cm

- Unphysical events at -1 we very late depositions (nuclear de-excitations) or reconstructed super-luminal \bullet
- Scatter more pronounced in the reconstructed case \bullet

Energy residuals. For 100 MeV neutrons at 300 cm

- Increase of the width of the residuals \bullet
- Increase of the scatters in the reconstructed case \bullet

Energy residuals. For 500 MeV neutrons at 300 cm

- Scatter case becomes much more pronounced ullet
- Increase of the resolution and bias in the energy reconstruction \bullet

Look at the resolution and bias versus energy. How good? 0.6

- Non-physical events are ignored \bullet
- Case 3m lever arm \bullet
- Resolution **RMS** of the residuals \bullet
- Bias Mean of the residuals (negated to be on the \bullet same scale)
- Bias and resolution increase with kinetic energy \bullet
- Adding scatters worsen the bias and resolution \bullet

Conclusion and Outlook. Summary

- CALICE calorimeters are *good candidates for a DUNE* Near detector ECAL \bullet
- **Obvious modifications:**
 - Absorber type/thickness, granularity, timing, electronics... \bullet
- **Optimization studies** of the ECAL design are ongoing \bullet
 - Reduce channel count / cost Keep/Improve energy, angular and neutron performance \bullet
 - \rightarrow Understand the details of the calorimeter implementation on low/mid-level performance parameters \bullet
- However, still to be done understand the impact of performance on oscillation analysis \rightarrow study to be done \bullet
- First look (promising) into **neutron energy reconstruction** with ToF technique \bullet
 - Overall good efficiency (> 50-70%) and good energy resolution (10-20%) between 50 to 900 MeV \bullet
 - However, significant bias (10-30%) in the energy reconstruction to higher kinetic energies \bullet
- Still few things to work out \bullet
 - Re-run the study for different configurations (Sc thickness / Abs material) \bullet
 - Perform the study in a pile-up environment study purity

Energy residuals. For 50 MeV neutrons at 100 cm

- Unphysical events at -1 we very late depositions (nuclear de-excitations) or reconstructed super-luminal \bullet
- Scatter more pronounced in the reconstructed case \bullet

Energy residuals. For 100 MeV neutrons at 100 cm

- Increase of the width of the residuals \bullet
- Increase of the scatters in the reconstructed case \bullet

Energy residuals. For 500 MeV neutrons at 100 cm

- Scatter case becomes much more pronounced \bullet
- Increase of the resolution and bias in the energy reconstruction ullet

Page 32