Studies of muon data and simulation with the CALICE AHCAL 2018 Technological Prototype

GEFÖRDERT VOM

Saiva Huck*, Erika Garutti University of Hamburg

Bundesministerium für Bildung und Forschung

CALICE Collaboration Meeting Utrecht 12.04.2019

*saiva.huck@desy.de

AHCAL 2018 Technological Prototype DER FORSCHUNG | DER BILDUNG

- CALICO
- Analog Hadron Calorimeter (AHCAL): highly granular HCAL for Particle Flow
- 2018 Technological Prototype to test performance of the AHCAL design
- size of ~ 1 m³, 38 layers ~ 4 λ_{int}
- ~ 22,000 single channels of plastic scintillator tile + SiPM

Test beam at CERN SPS

- Test beams in May & June 2018 at CERN SPS North Area, beam line H2
- For May: only AHCAL prototype
- For June: additional pre-shower, 60x60 mm² tiles layer, tail catcher

Muon simulation studies

- Muons used for calibration
 - Definition of 1 MIP = MPV of muon hit energy distribution
 - Many parameters best tuned with muons
- Geant4 10.03 simulation
 - QGSP_BERT_HP physics list
 - Digitisation
 - No simulation of noise
 - Same reconstruction chain as for data including cut of hits with energies < 0.5 MIP
- 40 GeV muons May data
 - Cross-checked with 120 GeV muons
 - Very similar results for June

Consistency of the MPV calibration

- MPV = maximum of Landau-Gaussian fit to the hit energy distribution
- Calibration of each channel to have MPV = 1 MIP using 40 GeV muons
- Also used to adapt the GeV to MIP conversion factor in the digitisation

Consistency of the MPV calibration

- MPV = maximum of Landau-Gaussian fit to the hit energy distribution
- MPV consistently at 1 over calorimeter depth and at both energies

0

Ο

0

0

1 number of entries/number of events 10^{-1} 10^{-3} 10^{-3} Data Definition of a muon track: MC \geq 30 hits in the same tower **CALICE WORK** <= 2 skips in between hits **IN PROGRESS** Only events with exactly 1 track used 95% of MC events (1.1 million) 76% of data events (1.3 million) 0 2 3

- Number of hits per event overall a bit higher for simulation
- Double muon peak not entirely removed after track selection

- Number of hits per event overall a bit higher for simulation
- Double muon peak not entirely removed after track selection due to tower-changing tracks
 number of tracks = 1

- Number of hits per event overall a bit higher for simulation
- Double muon peak not entirely removed after track selection due to tower-changing tracks
 number of tracks = 1

- Hit energy distribution very similar for data and simulation
- Slight excess in high energy tail for simulation
- Slight excess in low energy area for data

- Agreement of mean hit energy per layer very good after event selection
 - Slightly improved by track selection
 - Greatly improved by nHits selection

- Agreement of mean number of hits per layer improved by event selection
- Rise in number of hits with depth for data only after track selection: contamination?
- Lower number of hits in outer layers due to tower-changing tracks

40 and 120 GeV

- Stronger increase of **mean hit energy per layer** with depth at 120 GeV
- Agreement of mean hit energy per layer better at 40 GeV
- Increased influence of radiative effects at 120 GeV

40 and 120 GeV

- Stronger increase of mean number of hits per layer with depth at 120 GeV
- Increased influence of radiative effects at 120 GeV

Hits on track and outside track

12.04.2019

Hits on track and outside track

Hits on track and outside track

Mean radial distance to track

Very large mean radial distance to track in first layers for data: contamination?

Lateral development: hit numbers

12.04.2019

Lateral development: hit numbers

Conclusion

- Muons are an important tool for the calibration of highly granular calorimeters
- MPV is a useful calibration variable
 - Independent of depth
 - Independent of different energies
- Good agreement between muon data and simulation after event selection
- Next steps: understanding the differences outside the tracks
 - Improvement of track finding
 - Finding the sources of the differences
 - Contamination in data
 - Imperfections in the detector description in simulation
 - Treatment of radiative effects in simulation
 - Implementation of the wire chamber information

May 2018 test beam setup

Simulation events

Simulation events

Birk's constant

MPV in single channels

Lateral development: hit energy

Universität Hamburg

12.04.2019

40 GeV vs. 120 GeV

40 GeV vs. 120 GeV

UΗ 曽

Comparing data and simulation

Lateral profiles

Lateral profiles

• Radial distance D_{radial} in numbers of tiles

$$\sqrt{(X_{hit} - X_{track})^2 + (Y_{hit} - Y_{track})^2}$$

- Ring 0: on track
- Ring 1: in same tower as track
- Ring 2: D_{radial} > 0 && D_{radial} < 2
- Ring 3: D_{radial} >= 2 && D_{radial} < 3
- Ring 4: D_{radial} >= 3

Contamination in data?

Lateral development: hit numbers

Large deviations outside track

- Peak to low hit energies for data: noise?
- Larger high hit energy tail for simulation: radiation?
- Hit energies higher in first layers for data: contamination?

Large deviations outside track

- No rise in number of hits per event over first layers for data: contamination?
- Very large mean radial distance to track in first layers for data: contamination?

Lateral development: hit numbers

Lateral development: hit energy

MIPTrackFinder

Consistency of the MPV calibration

- MPV = maximum of Landau-Gaussian fit to the hit energy distribution
- Calibration of each channel to have MPV = 1 MIP using 40 GeV muons
- Also used to adapt the GeV to MIP conversion factor in the digitisation

