Local Software Compensation in the W-AHCAL

12.04.2019 **Christian Winter**

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Motivation

- Particle Shower consists of hadronic and e.m. component
- Different response to different component
- Apply weight to correct response \bullet
- → Software Compensation

Global Software Compensation

• Weight whole event

Local Software Compensation

• Weight each hit based on the density of deposited energy

For steel absorber: Comparable results for global and local SC

Christian Winter

Motivation

- W-AHCAL was considered for CLIC
 - Provide sufficient depth for high energy showers
 - Limit diameter of surrounding solenoid
- W-AHCAL prototype is compensating (e/h \approx 1)
- How does global SC compare to local SC for W-AHCAL ?
- → Compare results to CAN 062

Data Sample

- Data recorded at CERN SPS in 2011
- 10 80 GeV π^- for analysis
- 20 80 GeV π^+ for crosscheck
- Two Cherenkov counters used to select pion sample
- Some runs without TCMT
- Only W-AHCAL considered
- Select events with shower start in the 2-4 layer
- → Minimize leakage

Global SC: Results

- Slight improvement of energy resolution
- Absolute resolution improved by 2-5%
- Expected for compensating calorimeter

Calibration

For each run:

- Divide hit energy spectrum into bins with same amount of energy
- Applying weight for each bin for each event

- Divide hit energy spectrum into bins with same amount of energy
- Applying weight for each bin for each event

For each bin 3 parameters : a_i, b_i, c_i

For W-AHCAL in total $3 \times 8 = 24$ free parameter:

$$\omega_i(E) = a_i + b_i \cdot \frac{E}{S} + c_i \cdot \left(2 \cdot \left(\frac{E}{S}\right)^2 + 1\right)$$

- Divide hit energy spectrum into bins with same amount of energy
- Applying weight for each bin for each event

For each bin 3 parameters : a_i, b_i, c_i

For W-AHCAL in total $3 \times 8 = 24$ free parameter:

$$\omega_i(E) = a_i + b_i \cdot \frac{E}{S} + c_i \cdot \left(2 \cdot \left(\frac{E}{S}\right)^2 + 1\right)$$

Optimal weights are found by minimizing the χ^2 function:

$$\chi^{2} = \sum_{events} \frac{(E_{SC} - E_{beam})^{2}}{E_{beam} \cdot N_{events}}$$

Christian Winter

- Divide hit energy spectrum into bins with same amount of energy
- Applying weight for each bin for each event

For each bin 3 parameters : a_i, b_i, c_i

For W-AHCAL in total $3 \times 8 = 24$ free parameter:

$$\omega_i(E) = a_i + b_i \cdot \frac{E}{S} + c_i \cdot \left(2 \cdot \left(\frac{E}{S}\right)^2 + 1\right)$$

Optimal weights are found by minimizing the χ^2 function:

$$\chi^{2} = \sum_{events} \frac{(E_{SC} - E_{beam})^{2}}{E_{beam} \cdot N_{events}}$$

Christian Winter

Local SC: Results

- Significant improvement of energy resolution compared to global SC
- Improvement between 10 20 % \bullet
- \rightarrow Results not expected

- In the range 20 80 GeV
- Similar improvement between 6 20 %

	I
_	
,	

	eigh	-
	л К	6
 Hits in the first bin get weighted up 	Bi	
 Minor change in other bins 		5
 Software compensation improvement mainly 		4
from low energetic hits		3
 Improvement possibly caused by larger 		_
number of neutrons released in tungsten		2
→ Boost hadronic part		1
		0
		-

Local SC: Correlation

- Correlation for low energies
- Origin ?
 - Neutrons
 - Noise

→ Has to be investigated further

CALICE Meeting Utrecht 2019

Promising results, but

Promising results, but

- Still work in progress
- Stability issues, non linearity is amplified for certain energies
- Maybe caused by data quality?

Promising results, but

- Still work in progress
- Stability issues, non linearity is amplified for certain energies
- Maybe caused by data quality?

Promising results, but

- Still work in progress
- Stability issues, non linearity is amplified for certain energies
- Maybe caused by data quality?

Next steps:

- Replace bad runs
- Noise measurement

Promising results, but

- Still work in progress
- Stability issues, non linearity is amplified for certain energies
- Maybe caused by data quality?

Next steps:

- Ronlaco had rune
- Noise measurement

Summary & Outlook

- Similar improvement of energy resolution in AHCAL with steel absorber
- Small improvement with global SC in W-AHCAL (up to 5%)
- High gain in energy resolution with local SC (up to 20%)
- Stability issues for certain energies
- Amplification by SC

Outlook:

- Consider uncertainties
- Noise measurement

Backup

Backup: Energy Resolution

Backup: Energy Resolution

Christian Winter

Global

Backup: Bin Weight

CALICE Meeting Utrecht 2019

Backup: Bin Weight

Backup: Reconstructed Energy

Christian Winter

CALICE Meeting Utrecht 2019

Backup: Correlation

Christian Winter

Backup: Correlation

Christian Winter

