Particle Identification in the 2018 AHCAL test beam data

CALICE Collaboration Meeting

Vladimir Bocharnikov (DESY), Utrecht, 10-12 April 2019

P.N.Lebedev Physical Institute of the Russian Academy of Science

Outline

- Test beam particle ID
 - Introduction
 - Cut-based method
 - BDT method
- Event filtering studies

The Analog Hadron Calorimeter (AHCAL)

The AHCAL Technological Prototype 2018

AHCAL Technological Prototype 2018:

38 layers (of 24x24 tiles each) alternating with 2cm steel absorber plates. In total: ~22000 channels, ~4 λ .

CERN SPS test beams: in May, June and October 2018 prototype was tested with the $e/\mu/\pi$ beams

beam line

Motivation for particle ID

We always have a deal with contamination by other particles.

 \Rightarrow To investigate detector response to particles of

given type we need to perform particle identification

Observables

For particle ID

Cut-based method

For particle ID (10 GeV particles)

Bad quality events:

- **Hits**: nHits < nHits_min
- multi-particle and early shower event filtering will be discussed in the second part of the talk (Not applied in following results)

Electron events:

- **Hits**: 45 < nHits < 95
- Shower start layer: st < 10
- Shower radius: 0 < r < 65 [mm]
- **COGz:** zcog < 400 [mm]
- Fraction in first 25 layers: frac25 > 0.9

Muon (muon-like) events:

- Not an electron event
- **Hits**: 0 < nHits < 70
- Shower radius: 0 < R < 30 [mm]
- **COGz:** 260 < zcog < 800 [mm]
- Fraction in first 25 layers: frac25 < 0.95

Remaining events are classified as hadron events.

Simulations vs. data

Hadron events. Work in progress...

MC data sets simulated and fully reconstructed according to test beam setups using GEANT4 routine (QGSP_BERT_HP physics list)

Shower radius, [mm] Number of hits per event Center of gravity in z, [mm] 450 E 1400 400 E 1200 350 1000 F 300 F 300 800 F 250 F 200 E 600 200 150E 400 100 E 100 200 F 50 F 800 1000 Fraction of energy in 1st 25 layers Shower start layer 3000 3000 **TBJune 10GeV** 2500 pion data 2500 17505 events 2000 2000 1500 1500 10GeV MC pions 18811 events 1000 1000 500 Same cuts to select hadron events

Used for cut adjustment and training/testing of BDT

Performance

of cut-based ParticleID for 10GeV particles.

Input. 🚽 Output 🔶	Hadron events	Muon-like events	Electron events	Empty (nHits < 30)
MC 10GeV pions	18811 events	536 events	653 events	Cut is not applied (0 events)
20000 events	94%	2,7%	3,3%	
MC 10GeV muons	56 events	19941 events	3 events	Cut is not applied (0 events)
20000 events	0,3%	99,7%	~ 0%	
MC 10GeV electrons 20000 events	57 events 0,3%	0 events 0%	19943 events 99,7%	Cut is not applied (1 event)

Performance

of cut-based ParticleID for 10GeV particles.

Input. 🚽 Output 🗕	Hadron events	Muon-like events	Electron events	Empty (nHits < 30)
MC 10GeV pions 20000 events	18811 events 94%	536 events 2,7%	653 events 3,3%	Cut is not applied (0 events)
MC 10GeV muons 20000 events	56 events 0,3%	19941 events 99,7%	3 events ~0%	Cut is not applied (0 events)
MC 10GeV electrons 20000 events	57 events 0,3%	0 events 0%	19943 events 99,7%	Cut is not applied (1 event)
Data:				
10GeV pion run TBMay18 23000 events	7630 events 33,2%	9824 events 42,7%	3664 events 15,9%	1887 events 8,2%
10GeV pion run TBJune18 23000 events	17505 events 76,1%	3685 events 16%	807 events 3,5%	1003 events 4,3%

>12 cut values for signal/background tuning

Boosted decision tree (BDT)

Machine learning technique.

A **decision tree** takes a set of input features and splits input data recursively based on those features.

Training: Build and optimise the tree using set of known training events.

Boosted decision tree (BDT)

Machine learning technique.

A **decision tree** takes a set of input features and splits input data recursively based on those features.

Training: Build and optimise the tree using set of known training events.

Decision trees are powerful, but unstable. A small change in the training data can produce a large change in the tree. This is remedied by the use of **boosting**.

Boosting: Built many trees, so that the weighted average over all trees is insensitive to fluctuations.

BDT input 10GeV pion selection.

Training data:

- •10GeV MC pions 20k events (signal)
- •10GeV MC muons 20k events

(bckgr)

10GeV MC electrons - 20k events(bckgr)

Variables:

- Shower radius
- Number of hits
- Center of gravity in z
- Fraction in first 25 layers
- Shower start layer

No cuts are applied

BDT output

10GeV pion selection.

Pions vs. muons&electrons

Test data:

- 10GeV MC pions 20k events (signal)
- 10GeV MC muons 20k events (bckgr)
- 10GeV MC electrons 20k events (bckgr)
- No cuts

Punch-through rejection

Input. 🚽 Output 🔶	Hadron events	Muon-like events
MC 10GeV pions	18811 events	536 events
20000 events	94%	2,7%

Punch-through rejection

Input. J Output 🗕	Hadron events	Muon-like events
MC 10GeV pions	18811 events	536 events
20000 events	94%	2,7%

Showering pions vs. muon-like

Training/test data:

- 10GeV MC pions 19,5k events (signal)
- Cut: Shower start < 38
- 10GeV MC muons 20k events (bckgr)

Punch-through rejection

Event filtering for multi-particle and early showers rejection

Clustering

Algorithm: Hits are grouped in clusters if if they are neighbours in volume, {I,J,K}-space is used.

Steering parameters:

- Size of volume (T and L),
- minimum nHits in cluster
- z_max of first hit in cluster (for filtering)

*T = 1, L = 2 * nHits_min = 5 * z_max = 100mm

If nClusters > 1 => multi-particle event (or early shower)

Clustering

Algorithm: Hits are grouped in clusters if if they are neighbours in volume, {I,J,K}-space is used.

Steering parameters:

- Size of volume (T and L),
- minimum nHits in cluster
- z_max of first hit in cluster (for filtering)

*T = 1, L = 2 * nHits_min = 5 * z_max = 100mm

If nClusters > 1 => multi-particle event (or early shower)

Incoming MIP tracks

Construct towers with same I and J in first layers.

Steering parameters:

- Number of first layers
- Minimum number of hits in track

**nPrimaryTrackLayers* = 4 **MinHitsInPrimaryTrack* = 3

If nMIPTracks > 1 => multi-particle event

TBMay18 electron 10GeV MC vs data

TBMay18 10GeV **MC electron**: 6 (<<1%) out of 10000 events

Energy sum, [MIP]

Center of gravity in z, [mm]

DESY. | Test beam Particle ID | CALICE Collaboration Meeting, 10-12 Apr 2019 | Vladimir Bocharnikov

800

no filter

filtered

rejected

1000

ahc_cogZ

Rejected events. Simulations vs. data

Rejected events. Simulations vs. data

Summary and outlook

Particle ID & Event filtering

- **Cut-based method** gives satisfying identification
 - Signal/background tuning is complicated
- **BDT method** gives promising results

Higher quality of identification

☑ One parameter tuning will be useful for further calibration/physics analyses

□ Train BDT with all TB energies, implement to CaliceSoft

Event filtering is implemented

- Image: moves data to better agreement with MC
- should be checked with other TB runs (muons, other energies)
- □ Early showering MC pions need further investigation
- Clustering can be used for other studies
- Improve agreement of data and simulations (work in progress...)

Of filtering studies

Of filtering studies

- Calculate event, layer and hit variables
- Set LCRelations between sets of variables

Of filtering studies

Reco + StdVariables calculation

- Calculate event, layer and hit variables
- Set LCRelations between sets of variables

Of filtering studies

Reco + StdVariables calculation

- Calculate event, layer and hit variables
- Set LCRelations between sets of variables

Of filtering studies

Reco + StdVariables calculation

- Calculate event, layer and hit variables
- Set LCRelations between sets of variables

Of filtering studies

In *StdVariablesProcessor:*

- Calculate event, layer and hit variables
- Set LCRelations between sets of variables

In HitclassificarionProcessor:

- Hits are divided into two groups:
 - Detached hits
 - Non-detached hits:
 - Track hit candidates (isolated)
 - Hits from cluster

Of filtering studies

In HitclassificarionProcessor:

- Hits are divided into **two** groups:
 - Detached hits
 - Non-detached hits:
 - Track hit candidates (isolated)
 - Hits from cluster

Detached hits

Limited number of neighbours in volume (Calculated by {I,J,K} position)

Of filtering studies

In HitclassificarionProcessor:

- Hits are divided into two groups:
 - Detached hits
 - Non-detached hits:
 - Track hit candidates (isolated)
 - Hits from cluster

Detached hits

Limited number of neighbours in volume (Calculated by {I,J,K} position) Steering parameters:

• Size of volume (T and L)

Of filtering studies

In HitclassificarionProcessor:

- Hits are divided into **two** groups:
 - Detached hits
 - Non-detached hits:
 - Track hit candidates (isolated)
 - Hits from cluster

Detached hits

Limited number of neighbours in volume (Calculated by {I,J,K} position) Steering parameters:

- Size of volume (T and L)
- Maximum number of neighbours

Analysis flow Of filtering studies

Hit classification

In HitclassificarionProcessor:

- Hits are divided into **two** groups:
 - Detached hits
 - Non-detached hits:
 - Track hit candidates (isolated)
 - Hits from cluster

Full event

Parameters: T = 1 L = 2 Nmax = 2

Only detached hits **No preshower hits**

Only non-detached hits **No preshower hits**

Analysis flow Of filtering studies

Hit classification

In HitclassificarionProcessor:

• Hits are divided into **two** groups:

• Detached hits

- Non-detached hits:
 - Track hit candidates (isolated)
 - Hits from cluster

Full event

Only detached hits **No preshower hits**

Only non-detached hits **No preshower hits**

CAN22

Of filtering studies

In *StdVariablesProcessor:*

- Calculate event, layer and hit variables
- Set LCRelations between sets of variables

In HitclassificarionProcessor:

- Hits are divided into two
 groups:
 - **Detached** hits
 - Non-detached hits:
 - Track hit candidates (isolated)
 - Hits from cluster

In ClusterCounterProcessor:

- Group all non-detached hits to clusters
- Calculate CoG in x and y for each cluster
- Set relations from layer variables to clusters

Of filtering studies

In StdVariablesProcessor:

- Calculate event, layer and hit variables
- Set LCRelations between sets of variables

In HitclassificarionProcessor:

- Hits are divided into two
 groups:
 - Detached hits
 - Non-detached hits:
 - Track hit candidates (isolated)
 - Hits from cluster

In ClusterCounterProcessor:

- Group all non-detached hits to clusters
- Calculate CoG in x and y for each cluster
- Set relations from layer variables to clusters

In TBParticleID:

 Calculate average spread of clusters in first nFirstLayers layers

Of filtering studies

Cluster analysis (in *TBParticleID*)

In TBParticleID:

• Calculate average transverse spread of clusters in first nFirstLayers layers

nFirstLayers = 5

Of filtering studies

Cluster analysis (in *TBParticleID*)

In TBParticleID:

• Calculate average transverse spread of clusters in first nFirstLayers layers

nFirstLayers = 3

nFirstLayers = 3, *minSpread(for rejection)* = 30mm

absorber

Shower start in firs absorber

nFirstLayers = 3

TODO: Set weights to layers

