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Software Energy Compensation Procedure

ELECTRO-
HADRONIC  \AGNETIC

> AHCAL is a sampling calorimeter; '

> AHCAL composed of alternating
layers of active and passive material;

> Calorimeter response different for \
electromagnetic and hadronic energy \
deposition;

= Pure hadronic showers contain more S DS SHOWER TENDS TO
‘invisible energy” (v .- . u*, binding

. A comparison of an electromagnetic and hadronic
energy), not seen by active layers.

shower
(Credit to Christian Winter’s presentation!)
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Software Energy Compensation Procedure

= The § fraction of each shower

fluctuates significantly from eventto | , " e
o
event; |
0 €
| - n°, n e{/mf\f\’
> At best, energy is distributed in [T ble\\‘O\,
calorimeter as a Gaussian about | l'_’:;pa( ;'/“77'\) \\\Q\af, pn ..
~N

mean of shower under various \
A

assumptions;

~ full shower containment w/i 5 A hadron may interact via EM or Strong Force.

calorimeter;
> Only one type of particle observed;
> Invisible energy fluctuations are
distributed as Gaussian. > Secondary/tertiary nuclear reactions lead to
hadronic cascade

= EM interactions initiate EM subshowers (i.e.
interactions g — )

1
3

> Software compensation possible by - Some observable energy lost to invisible
weighting energy distribution energy’
according to Monte Carlo Simulation

(MC) fit; UH
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Software Energy Compensation Procedure

Local Compensation
Energy is weighted on a ’hit-by-hit" basis:

Nhits

Eshower, Reco = Z W(Ea 6)EHit,i
=0

Eshower, Reco = Reconstructed energy of a shower;

w(E, O) = Weight as a function of:
particle energy (E) (GeV);
observables O to describe + proportion in shower;

Eshower Hit,i = Energy of a shower hit;
Nyits = Number of hits.
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Software Energy Compensation Procedure

Initial Questions

Which shower variables are most optimal to choose
weights in order to perform energy compensation?

How does choosing weights based on these variables affect
the result of the energy compensation?

Is this question best suited for machine learning?
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On Choosing Weights for Local Compensation: Preamble

Distributions of recorded observables contain variances
between hits;

v

> Technique called Principal Component Analysis used to
analyze and project to dimensions of significant variance
between hits in data;

> Allows bins to be chosen in most statistically significant
dimensions possible;

= In this projection, hits are maximally separated from one
another other in variance space.

CAI.n(eo:
Jack Rolph | UHH | April 11, 2019 | Page 6



On Choosing Weights for Local Compensation: Preamble

Definitions of Observables:

I - Index of hit scintillator tile in X direction (1 - 24);
J - Index of hit scintillator tile in Y direction (1 - 24);

K - Index of hit scintillator tile in Z direction (I - 40);

Egsum - Energy of each process hit (MIPs) contributing to
calorimeter cell, Pedestal-subtracted and MIP-calibrated;

< t > - Reference-subtracted and NS-calibrated time of the
average hit (nanoseconds) in calorimeter cell;.
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On Choosing Weights for Local Compensation: Preamble

Standard Score (Z-Score)

z; = Standardized Z-score of variable x at index ¢
(# Standard Deviations from Mean);

x; = Variable x in hit;

T = Mean of variable z over all hits of all events;

o, = Standard Deviation of variable = over all hits over all
events;
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On Choosing Weights for Local Compensation: Preamble

Principal Component Analysis (PCA)

Procedure of finding the eigenvalues and eigenvectors of the
covariance matrix;

Useful for:

Dimensionality reduction;
Co-variance analysis;
Dimensional analysis.

Cov(O) = Covariance Matrix of Observables ()

\; = Eigenvalue/Length of Principal Component in o2 Space (Significance)

V; = Eigenvector/Direction of Principal Component in 62 Space (Axis of
Signficance)
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On Choosing Weights for Local Compensation: Preamble

z(z0) - Z-Score of Variable zg

v

> 2z(x1) - Z-Score of Variable z1

> ¥ - Principal Component 0

(Eigenvector of Greatest Variance)

~ ¥ - Principal Component 1

(Eigenvector of Next Greatest Variance)

= Mg - Significance of Principal
Component 0 (Unnormalized)

(Eigenvalue of Greatest Variance)

> A1 - Significance of Principal
Component 1 (Unnormalized)
(Eigenvalue of Next Greatest Variance)

Convention:

= PCO refers to normalized ?0, the most
> 2(w0) significant principal component;

= PC1 refers to normalized 71, the most
significant principal component etc.;
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On Choosing Weights for Local Compensation: Method

= 20,000 7~ events were produced using Geant4 Simulation of
AHCAL, with each contributing process and energy deposition
recorded;

> Energy:
> Poisson Smearing of 14 pixels applied;
= 0.5 MIP cut on Hit Energy;
= Time:
> Gaussian Smearing of 5 ns applied.
> Hits:
> Reject # Hits < 50 (u*/Punch-through 7~ Cut)

(Credit to Eldwan Brianne for the simulation!)

= Standard scores (z) were calculated in I, J, K, Egy,, and
<t>;

> PC dimensions/significances calculated by eigendecomposing
the covariance matrix of the calculated z-scores.
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On Choosing Weights: Cell Energy Deposition Results

| Hit Distribution J Hit Distribution K Hit Distribution
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Distributions of different observables from MC with means and variances.
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On Choosing Weights: Cell Energy Deposition Results

Explained Variance

A
o ""PoA
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Explained variance as a function of PC in 20,000 Event 20 GeV =~ MC.
UH
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On Choosing Weights: Cell Energy Deposition Results

Outer Product of v, Outer Product of v, Outer Product of v,

Ereray =

Outer Product of v, Outer Product of v,

Outer products (|v;) (v;]) as a function of input parameters in 20,000

~ Eyent 20 GeV 7~ MC. Red lines show negligble components.
CAu3
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On Choosing Weights: Cell Energy Deposition Results

PCOvsPC2

Hit Energy Density of PCO - PC2
3 g

Lol
8 -6 -

Ly | I A B |
4 -2 0 2
Distribution of hits projected on PCO and

PC2 for 20 GeV 7w~ simulation

Hit energy density projected on PCO and
PC2 for 20 GeV 7~ simulation
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On Choosing Weights: Cell Energy Deposition Results

PCOvsPC2 Hit Radius (Distance from CoG) of PCO - PC2

[ S AN PRI AR B UP
-4 -2 0 2 4 6

Distribution of hits projected on PCO and Hit radius projected on PCO and PC2 for 20
PC2 for 20 GeV 7~ simulation GeV 7~ simulation
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On Choosing Weights: Cell Energy Deposition Results

# of Processes of PC 0 - PC 2
PCOvsPC2

Process Count
O races:

Covvlvv b b b b Lo bown bowa Laws
=10 -8 -6 -4 -2 0 2 4 6 8 10
PCO

Distribution of # processes responsible
for cell energy deposition projected on PCO
and PC2 for 20 GeV 7~ simulation

Deposition Processes in Simulation include: lonization, Multiple Scattering, Compton Scattering, Coloumb

Scattering, Photoelectric Effect, Bremsstrahlung, Inelastic/Elastic Scattering, Neutron Capture, Positron
Annihilation etc.
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Distribution of hits projected on PCO and
PC2 for 20 GeV 7~ simulation




On Choosing Weights: Cell Energy Deposition Results

PCOvsPC2

PCOvsPC2

PC2

‘
[ SR S SHE S S S

PCO - PC2 distribution in 20 GeV 7w~ Runs

Distribution of hits projected on PCO and from June SPS Testbeam using MC
PC2 for 20 GeV 7~ simulation Eigenvectors, Averages and Variances (Runs
061269 - 73)
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On Choosing Weights for Local Compensation: Choosing Bins

Current Binning Argument:

# interaction processes (and other variables) seem to vary in
pattern space in a way that describes the shower core

Ansatz: Shower core likely to contain highest # processes,
also a discrete, projection-independent variable (.. useful to
seperate/classify co-ordinates);

EM-dominated showers — tighter, denser shower core
Hadronic-dominated showers — looser, more sparse shower core;

Weights should reflect "core’ and "periphery’ hits differently
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On Choosing Weights for Local Compensation: Choosing Bins

Cut Extraction Procedure:

> Check max. # of processes taking place in pattern space,
and the # hits of this bin.

> Fit PDF to each distribution of max. # of hits using 2D
Kernel Density Estimation;

> Combine and weight PDFs in a manner that provides
appropriate trade-off between classification error, # bins
and # hits found bins;

= Extract cut from Hessian matrix of PDF error of final PDF
combination.

CAI.l@
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On Choosing Weights for Local Compensation: Choosing Bins

PCO-PC2 with Maximum 1 Processes

* 8; 10
=
£
o
E 1
o g
i
i
-sf— 107
3
'-70‘ -8 -6 —4 = 0 2 4 6 10
PCO
Hit distribution f di ith Fitted PDF distribution for hit cells with a
it .bllsm ution for :o—or Inates wit k'a possible maximum of one process taking
possible maximum of one process taking place there.
place there,
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On Choosing Weights for Local Compensation: Choosing Bins

1-4 Processes. 5 - 10 Processes.

Weighted PDF for 1-4 processes bin. Weighted PDF for 5-10 processes bin.
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On Choosing Weights for Local Compensation: Choosing Bins

Probability Overlap

N=Bins, x N=Bins, y
Peroz = »_ > min(PDFy(4,4),PDFy(d, 5))  (4)
i=0 j=0

Priror, 12 = Probability Overlap between PDFs 1 and 2
i, J = X, y index

PDF, (4, j) = PDF; at index (i, j)

PDF2(i,7) = PDFq at index (4, 5)
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On Choosing Weights for Local Compensation: Choosing Bins

PCO

Overlap PDF between bins for 1-4 processes and 5-10 processes.
This constitutes a 38.34 % classification error.
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On Choosing Weights for Local Compensation: Choosing Bins

Hessian Matrix

82PE’?"ror (ia ])

HeSS(PError(i’j)k'vl) 0x0x)

Local Maximum if det Hess(Pgyror (%, J)k,1)
Pgrror(i,7) § Turning Point if det Hess(Pgrror(i,7)k1) =0

Local Minimum if det Hess(Pgyror (i, J)k.1)

i, j, k, I = %, y, coordinate k, coordinate | index;

Prrror(i,5) = Probability Overlap between PDFs;
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On Choosing Weights for Local Compensation: Choosing Bins

|H(Perror)|

PC2

Determinant of Hessian of Prror

Ellipse Fit

rc2

o

Ellipse fit of |H (Perror)|
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On Choosing Weights for Local Compensation: Choosing Bins

1-4 Processes Cut Region 5-10 Processes Cut Region
g B
8
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Cut distribution for the 1-4 processes bin. Cut distribution for the 5-10 processes bin.
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On Choosing Weights for Local Compensation: Choosing Bins

Distributions of # Processes in Cut Regions

= L
%'25 L - 1-4 Processes Cut Region (42.32 % of Hit Cells)
- - 5-10 Processes Cut Region (57.68 % of Hit Cells)
02—
0.15—
01—
0.05—
0

7

8 9 10
# Processes in Cut Region

Final cut distribution.
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On Choosing Weights for Local Compensation: Choosing Bins

«  Bin1(Low # Processes)

Bin 2 (High # Processes)

Event display for a random simulated event in

I-J-K space.

K

sRew s

= Bin1 (Low # Processes)

Bin 2 (High # Processes)

Event display for another random simulated
event in /-J-K space.

UH
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>

>

CAI.l@

Dimensions of most significance to dataset were found;

Hits for 20 GeV 7~ vary most according to two dimensions:
> energy deposited/depth evolution
> volume evolution;

Cut has strong relationship with separating ‘core hits’ from
‘periphery’ hits: a low hit energy event in the core can be
weighted differently to on the periphery.

Potential link to 7 in shower; denser/more sparse
showers will likely have different distributions of hits in
each bin.

Can we extend this method using Egeco as an input?

Next — perform energy weighting procedure
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Backup

Example MNIST Dataset

N s wN e
“ o e wN oo
R

Ne o Ew N e
o e WO
]

N e E WS
v o ew N o
Ve wN e o

Handwritten digits 1-9 of MNIST dataset (8 x8 pixels = 64 dimensions)
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PCA Analysis

% Variance Explained

[} pt] 2 0 40 s0 @
# of Features

Cumulative variance of MNIST dataset as a function of number of
dimensions.
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Projection of MNIST dataset on Principal Components

N Distribution of MNIST dataset containing 28.5% of explained variance. g
CAu@d
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Principal Components 0-9 (70.8% explained variance)

R

3
PCS

e w s oo

I

Eigenvectors of MNIST dataset containing 70.8% of variance data.
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Backup

PCO-PC2 with Maximum 6 Processes

Cov v bvv o bvn b b b b b b L ay
-10 -8 -6 -4 -2 0 2 4 6 8 10
PCO
Fitted PDF distribution for hit cells with a
possible maximum of four processes taking
place there.

Hit distribution for co-ordinates with a
possible maximum of four processes taking
place there,
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Backup

PCO-PC2 with Maximum 8 Processes

PCO
Hit distribution for co-ordinates with a

possible maximum of seven processes taking
place there,

CAI.l@

Covv bl bv b b b b b Ly
-0 -8 -6 -4 -2 0 2 4 6 8 10

10?

Fitted PDF distribution for hit cells with a
possible maximum of seven processes taking
place there.
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Outer Product of v,

Energy

| J K Energy Time

Outer Product of PC O (Projection Operator)
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Outer Product of v,

Energy

| J K Energy Time

Outer Product of PC 1 (Projection Operator)

UH
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Outer Product of v,

Energy

| J K Energy Time

Outer Product of PC 2 (Projection Operator)

CALi(eo ‘
Jack Rolph | UHH | April 11, 2019 | Page 38




Outer Product of v,

Energy

| J K Energy Time

Outer Product of PC 3 (Projection Operator)
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Outer Product of v,

Energy

| J K Energy Time

Outer Product of PC 4 (Projection Operator)

N .
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Backup

PCOvsPC2 PCOvsPC 1

Distribution of hits projected on PCO and PCO - PCl1 distribution in 20 GeV 7~
PC2 for 20 GeV 7~ simulation simulation
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63.88% 74.98% 53.96% % 11.81% 10.44%

21.11%

74.98%  57.18% 24.61% .01% 11.89%

26.56% 15.68% 24.61%  54.69%

67.48% 68.71%

21.67% 68.71%

12.89% 37% 21.65% 35.53% | 65.44%

10.39%

CAU@ Error matrix of overlaps between different PDFs.
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Backup

Definition of Histograms of Maximum # Processes

Summary: make a set of histograms containing only the maximum
number of possible processes causing a hit at a given co-ordinate;

Hp+1(iaj) — Hp(ivj) + Hp—i—l(i:j)
f(l’]ap) Hp(%]) — O> if Hp+1(i7j) >
H,1(i,7) =0 otherwise

i, j, p = X, Yy, process index

H,11(i,j) = Histogram of next process distribution at bin
(2, )-

H,(i,7) = Histogram of current process distribution at bin

(4, 4)-
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Backup

Weighted Sum

N=PDFS N=Bins, x N=Bins, y

Z Z z N PDFSN PDF (

pO p

N=Bins, x N=Bins, y

Py = Weighted PDF;

%, j, p = X, Y, PDFs in Chosen Binning index;

N, = Total number of hit cells in histogram Hp;

Zg OPDFS Np = Sum over the total number of hit cells in bin.

PDF, (2, 5) = PDF value of current process distribution at bin (3, 5).
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Backup

CAI-l@;rror matrix of weighted PDFs summed in bins for 1-4 processes and 5-10 processes. [Saul
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Main Observations of PCs:

> Only two PC dimensions have anything to do with energy.

> PC 0 and PC 4 seem to describe complex energy-depth
evolution co-related space between K, E and t (PC 4 similar
to PC 0).

> PCs 1, 2 and 3 seem to describe a complex type of volume
evolution co-related space for |, , K and t.

= PC 1, PC 2, PC 3 very similar; PCO and PC2 chosen to
analyze, as PC2 has a continuous distribution (no
'discrete peaks’ from artifacts of 1),K) .
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