Software Energy Compensation for the AHCAL.

Jack Rolph

University of Hamburg April 11, 2019

SPONSORED BY THE

Federal Ministry of Education and Research

Software Energy Compensation Procedure

- > AHCAL is a sampling calorimeter;
- AHCAL composed of alternating layers of active and passive material;
- Calorimeter response different for electromagnetic and hadronic energy deposition;
- > Pure hadronic showers contain more 'invisible energy' ($\nu_{e,\mu,\tau}$, μ^{\pm} , binding energy), not seen by active layers.

SHOWER TENDS TO SHOWER TENDS BE MORE SPARSE BE DENSER

A comparison of an electromagnetic and hadronic shower (Credit to Christian Winter's presentation!)

Software Energy Compensation Procedure

- The ^e/_h fraction of each shower fluctuates significantly from event to event;
- At best, energy is distributed in calorimeter as a Gaussian about mean of shower under various assumptions;
 - full shower containment w/i 5λ calorimeter;
 - > Only one type of particle observed;
 - Invisible energy fluctuations are distributed as Gaussian.
- Software compensation possible by weighting energy distribution according to Monte Carlo Simulation (MC) fit;

A hadron may interact via EM or Strong Force.

- > EM interactions initiate EM subshowers (i.e. $\frac{1}{3}$ interactions $\pi_0 \rightarrow \gamma\gamma$)
- Secondary/tertiary nuclear reactions lead to hadronic cascade
- > Some observable energy lost to 'invisible energy'

Software Energy Compensation Procedure

Local Compensation

Energy is weighted on a 'hit-by-hit' basis:

$$E_{\mathsf{Shower, Reco}} = \sum_{i=0}^{N_{\mathsf{Hits}}} \omega(E, \vec{O}) E_{\mathsf{Hit}, i}$$

E_{Shower, Reco} = Reconstructed energy of a shower;

> $\omega(E, \vec{O}) =$ Weight as a function of:

- > particle energy (E) (GeV);
- > observables \vec{O} to describe $\frac{e}{h}$ proportion in shower;
- > $E_{\text{Shower Hit},i} = \text{Energy of a shower hit};$
- N_{Hits} = Number of hits.

Initial Questions

- Which shower variables are most optimal to choose weights in order to perform energy compensation?
- How does choosing weights based on these variables affect the result of the energy compensation?

> Is this question best suited for machine learning?

- > Distributions of recorded observables contain variances between hits;
- > Technique called Principal Component Analysis used to analyze and project to dimensions of significant variance between hits in data;
- > Allows bins to be chosen in most statistically significant dimensions possible;
- In this projection, hits are maximally separated from one another other in variance space.

Definitions of Observables:

- > I Index of hit scintillator tile in X direction (1 24);
- > J Index of hit scintillator tile in Y direction (1 24);
- > K Index of hit scintillator tile in Z direction (1 40);
- *E*_{Sum} Energy of each process hit (MIPs) contributing to calorimeter cell, Pedestal-subtracted and MIP-calibrated;
- < t > Reference-subtracted and NS-calibrated time of the average hit (nanoseconds) in calorimeter cell;.

Standard Score (Z-Score)

$$z_i = \frac{x_i - \bar{x}}{\sigma}$$

 z_i = Standardized Z-score of variable x at index i (# Standard Deviations from Mean);

> x_i = Variable x in hit;

> \bar{x} = Mean of variable x over all hits of all events;

> σ_x = Standard Deviation of variable x over all hits over all events;

(2)

On Choosing Weights for Local Compensation: Preamble

Principal Component Analysis (PCA)

 Procedure of finding the eigenvalues and eigenvectors of the covariance matrix;

> Useful for:

- > Dimensionality reduction;
- > Co-variance analysis;
- > Dimensional analysis.

$$\mathsf{Cov}(ec{O}) = \sum_{i=0}^{dim(ec{O})} \lambda_i ec{V_i}$$

- > $Cov(\vec{O}) = Covariance Matrix of Observables (<math>\vec{O}$)
- > λ_i = Eigenvalue/Length of Principal Component in σ^2 Space (Significance)
- → V_i = Eigenvector/Direction of Principal Component in σ^2 Space (Axis of Significance)

(3)

I H-

On Choosing Weights for Local Compensation: Preamble

- > $z(x_0)$ Z-Score of Variable x_0
- > $z(x_1)$ Z-Score of Variable x_1
- v 0 Principal Component 0 (Eigenvector of Greatest Variance)
- \$\vec{v}_1\$ Principal Component 1 (Eigenvector of Next Greatest Variance)
- > \u03c6₀ Significance of Principal Component 0 (Unnormalized) (Eigenvalue of Greatest Variance)
- > \u03c6₁ Significance of Principal Component 1 (Unnormalized) (Eigenvalue of Next Greatest Variance)

Convention:

- PC0 refers to normalized \$\vec{v}_0\$, the most significant principal component;
- PC1 refers to normalized \$\vec{v}_1\$, the most significant principal component etc.;

On Choosing Weights for Local Compensation: Method

- > 20,000 π^- events were produced using Geant4 Simulation of AHCAL, with each contributing process and energy deposition recorded;
 - > Energy:
 - > Poisson Smearing of 14 pixels applied;
 - > 0.5 MIP cut on Hit Energy;
 - > Time:
 - > Gaussian Smearing of 5 ns applied.
 - > Hits:
 - > Reject # Hits < 50 (μ^{\pm} /Punch-through π^{-} Cut)

(Credit to Eldwan Brianne for the simulation!)

- Standard scores (z) were calculated in I, J, K, E_{Sum} and < t >;
- > PC dimensions/significances calculated by eigendecomposing the covariance matrix of the calculated *z*-scores.

Distributions of different observables from MC with means and variances.

Explained Variance

Explained variance as a function of PC in 20,000 Event 20 GeV π^- MC.

Outer products $(|v_i\rangle \langle v_i|)$ as a function of input parameters in 20,000 Event 20 GeV π^- MC. Red lines show negligible components.

UHI

CALICO

PC2 for 20 GeV π^- simulation

GeV π^- simulation

of Processes of PC 0 - PC 2

Distribution of hits projected on PC0 and PC2 for 20 GeV π^- simulation

Distribution of # processes responsible for cell energy deposition projected on PC0 and PC2 for 20 GeV π^- simulation

Deposition Processes in Simulation include: Ionization, Multiple Scattering, Compton Scattering, Coloumb Scattering, Photoelectric Effect, Bremsstrahlung, Inelastic/Elastic Scattering, Neutron Capture, Positron Annihilation etc.

1 H

Current Binning Argument:

interaction processes (and other variables) seem to vary in pattern space in a way that describes the shower core

Ansatz: Shower core likely to contain highest # processes, also a discrete, projection-independent variable (∴ useful to seperate/classify co-ordinates);

EM-dominated showers \rightarrow tighter, denser shower core Hadronic-dominated showers \rightarrow looser, more sparse shower core;

Weights should reflect 'core' and 'periphery' hits differently

Cut Extraction Procedure:

- > Check max. # of processes taking place in pattern space, and the # hits of this bin.
- > Fit PDF to each distribution of max. # of hits using 2D Kernel Density Estimation;
- > Combine and weight PDFs in a manner that provides appropriate trade-off between classification error, # bins and # hits found bins;
- Extract cut from Hessian matrix of PDF error of final PDF combination.

Hit distribution for co-ordinates with a possible maximum of one process taking place there,

Fitted PDF distribution for hit cells with a possible maximum of one process taking place there.

Weighted PDF for 1-4 processes bin.

Weighted PDF for 5-10 processes bin.

Probability Overlap

$$P_{\text{Error, 12}} = \sum_{i=0}^{N=\text{Bins, x}} \sum_{j=0}^{N=\text{Bins, y}} \min\left(\text{PDF}_1(i, j), \text{PDF}_2(i, j)\right) \quad (4)$$

P_{Error, 12} = Probability Overlap between PDFs 1 and 2 *i*, *j* = x, y index
PDF₁(*i*, *j*) = PDF₁ at index (*i*, *j*)
PDF₂(*i*, *j*) = PDF₂ at index (*i*, *j*)

Overlap PDF between bins for 1-4 processes and 5-10 processes. This constitutes a **38.34 % classification error**.

i, *j*, *k*, *l* = x, y, coordinate k, coordinate l index; *P*_{Error(*i*,*j*)} = Probability Overlap between PDFs;

 $|H(P_{error})|$

Cut distribution for the 1-4 processes bin.

Cut distribution for the 5-10 processes bin.

Distributions of # Processes in Cut Regions

Final cut distribution.

1 H

Event display for a random simulated event in I-J-K space.

Event display for another random simulated event in I-J-K space.

1H-

- > Dimensions of most significance to dataset were found;
- > Hits for 20 GeV π^- vary most according to two dimensions:
 - > energy deposited/depth evolution
 - > volume evolution;
- > Cut has strong relationship with separating 'core hits' from 'periphery' hits: a low hit energy event in the core can be weighted differently to on the periphery.
- > Potential link to $\frac{e}{h}$ in shower; denser/more sparse showers will likely have different distributions of hits in each bin.
- > Can we extend this method using *E_{Reco}* as an input?
- > Next ightarrow perform energy weighting procedure

Handwritten digits 1-9 of MNIST dataset (8×8 pixels = 64 dimensions)

Cumulative variance of MNIST dataset as a function of number of dimensions.

Distribution of MNIST dataset containing 28.5% of explained variance.

Eigenvectors of MNIST dataset containing 70.8% of variance data.

PC0-PC2 with Maximum 6 Processes

Hit distribution for co-ordinates with a possible maximum of four processes taking place there,

Fitted PDF distribution for hit cells with a possible maximum of four processes taking place there.

PC0-PC2 with Maximum 8 Processes

place there,

Hit distribution for co-ordinates with a possible maximum of seven processes taking place there.

Outer Product of v₀

							1
Time	- 0.01	0.00	0.25	-0.38	0.29	-	0.8
Energy	0.01	-0.00	-0.33	0.50	-0.38	_	0.6
к	- 0.00	0.00	0.21	-0.33	0.25		0.2
J	- 0.00	0.00	0.00	-0.00	0.00		-0.2 -0.4
I	- 0.00	0.00	0.00	-0.01	0.01		-0.6 -0.8
		J	ĸ	Energy	Time		_1

Outer Product of PC 0 (Projection Operator)

Outer Product of v₁

							1
Time	- 0.11	0.31	-0.24	0.00	0.21	-	0.8
							0.6
Energy	- 0.00	0.01	-0.00	0.00	0.00	-	0.4
						-	0.2
к	0.13	-0.36	0.28	-0.00	-0.24	-	0
							-0.2
J	- 0.16	0.45	-0.36	0.01	0.31		-0.4
							-0.6
I	- 0.06	0.16	-0.13	0.00	0.11		-0.8
			1	1	1		_1
	I	J	ĸ	Energy	Time		

Outer Product of PC1 (Projection Operator)

Outer Product of v₂

						· 1
Time	0.28	-0.12	-0.16	-0.00	0.14	-0.8
Energy	- 0.01	0.00	0.01	0.00	-0.00	-0.4
к	- 0.33	0.14	0.19	0.01	-0.16	0.2 0
J	- 0.24	0.10	0.14	0.00	-0.12	
1	- 0.57	0.24	0.33	0.01	-0.28	-0.6
		J	к	Energy	Time	

Outer Product of PC 2 (Projection Operator)

Outer Product of v₃

						1
Time	- 0.17	-0.19	-0.09	0.00	0.08	-0.8
						-0.6
Energy	- 0.00	-0.00	-0.00	0.00	0.00	-0.4
						-0.2
к	0.20	0.22	0.11	-0.00	-0.09	_0
						0.2
						-0.2
J	0.41	0.45	0.22	-0.00	-0.19	-0.4
						-0.6
1	- 0.37	-0.41	-0.20	0.00	0.17	-0.8
	I	J	к	Energy	Time	-1

Outer Product of PC 3 (Projection Operator)

Outer Product of v₄

							1
Time	0.01	-0.00	0.25	0.38	0.29	-	0.8
						_	0.6
Energy	0.01	-0.00	0.33	0.50	0.38	-	0.4
						-	0.2
к	0.01	-0.00	0.21	0.33	0.25	-	0
							-0.2
J	- 0.00	0.00	-0.00	-0.00	-0.00		-0.4
							-0.6
	0.00	0.00	0.01	0.01	0.01		0.0
	- 0.00	0.00	-0.01	-0.01	-0.01		-0.8
					Time		-1
	1	J	ĸ	Energy	rime		

Outer Product of PC 4 (Projection Operator)

Jack Rolph | UHH | April 11, 2019 | Page 41

1H

process						16.26%	11.81%	10.44%	10.26%	8.172%
1.	63.88%			31.22%	15.68%	15.47%	17.24%		21.11%	15.13%
2 Pro		57.18%			24.61%	15.39%	12.01%	11.6%	11.89%	10.39%
3 Pro.	53.96%	31.22%	55.09%	99.0%		33.45%	21.67%	15.77%	12.89%	8.433%
A Pro-	26.56%	15.68%	24.61%	54.69%	99.0%			22.84%	14.37%	7.175%
5 Pro-	16.26%	15.47%	15.39%		67.48%	98.99%		35.46%	21.65%	8.918%
6 Pro-	11.81%	17.24%	12.01%	21.67%		68.71%	98.99%			13.24%
1 Prot	10.44%	19.57%	11.6%	15.77%	22.84%	35.46%	57.74%	98.99%		27.83%
8 Prov	10.26%	21.11%	11.89%	12.89%	14.37%	21.65%		65.44%	98.79%	48.97%
9 Prov	8.172%	15.13%	10.39%	8.433%	7.175%	8.918%	13.24%	27.83%	48.97%	96.46%
10 Prot	Process 2 Pr	ocesses 3 Pr	ocesses A Pr	ocesses 5 Pr	oresses 6 Pr	ocesses 1 Pr	ocesses 8 Pr	ocesses o Pr	oresses . o Pr	oresses

Error matrix of overlaps between different PDFs.

Jack Rolph | UHH | April 11, 2019 | Page 42

Definition of Histograms of Maximum # Processes

Summary: make a set of histograms containing only the maximum number of possible processes causing a hit at a given co-ordinate;

$$f(i,j,p) \begin{cases} H_{p+1}(i,j) = H_p(i,j) + H_{p+1}(i,j) \\ H_p(i,j) = 0, & \text{if } H_{p+1}(i,j) > 0 \\ H_{p+1}(i,j) = 0 & \text{otherwise} \end{cases}$$

(6)

1H-

- > i, j, p = x, y, process index
- > $H_{p+1}(i, j)$ = Histogram of next process distribution at bin (i, j).

> $H_p(i, j)$ = Histogram of current process distribution at bin (i, j).

Weighted Sum

$$P_{\mathsf{W}} = \sum_{p=0}^{N=\mathsf{PDFS}} \sum_{i=0}^{N=\mathsf{Bins, x}} \sum_{j=0}^{N=\mathsf{Bins, y}} \frac{N_p}{\sum_{p=0}^{N=\mathsf{PDFS}} N_p} \mathsf{PDF}_p(i, j) \quad (7a)$$

$$N_p = \sum_{i=0}^{N=\mathsf{Bins, x}} \sum_{j=0}^{N=\mathsf{Bins, y}} H_p(i, j) \quad (7b)$$

> P_W = Weighted PDF;

- i, j, p = x, y, PDFs in Chosen Binning index;
- > N_p = Total number of hit cells in histogram H_p ;
- > $\sum_{p=0}^{N=\text{PDFS}} N_p$ = Sum over the total number of hit cells in bin.
- > $PDF_p(i, j) = PDF$ value of current process distribution at bin (i, j).

UH

care fror matrix of weighted PDFs summed in bins for 1-4 processes and 5-10 processes.

Jack Rolph | UHH | April 11, 2019 | Page 45

Main Observations of PCs:

- > Only two PC dimensions have anything to do with energy.
- > PC 0 and PC 4 seem to describe complex energy-depth evolution co-related space between K, E and t (PC 4 similar to PC 0).
- > PCs 1, 2 and 3 seem to describe a complex type of volume evolution co-related space for I, J, K and t.
- > PC 1, PC 2, PC 3 very similar; PC0 and PC2 chosen to analyze, as PC2 has a continuous distribution (no 'discrete peaks' from artifacts of I,J,K).

