Analysis of electron data and comparison with the simulation of the AHCAL Detector

CALICE Collaboration Meeting Utrecht, Netherland 12th April 2019

Amine Elkhalii elkhalii@uni-wuppertal.de

BERGISCHE UNIVERSITÄT WUPPERTAL

Bundesministerium für Bildung und Forschung

Outline

- $\circ~$ AHCAL technological prototype.
- Test beam on June 2018 at SPS
- $\circ~$ Motivation of the test beam
- $\circ~$ Comparison of electron data with simulation
- $\circ~$ Simulation of the beam line elements
- Electron selection
- \circ Longitudinal shower profile
- $\circ~$ Summary and outlook

AHCAL technological prototype

Steel absorber stack with 39 layers:

• 38 active layers of 72*72 cm²

AHCAL technological prototype

Steel absorber stack with 39 layers:

- 38 active layers of 72*72 cm²
- 4 HBUs per module
 - 16 ASCIs (each with 36 channels)
 - 576 channels (tile size :3*3 cm²)
- 1 active Tokyo layer (Naoki talk)
 - Tile size: 6*6 cm²

Module

Amine Elkhalii

CALICE Collaboration meeting, Utrecht 12.04.2019

AHCAL technological prototype

Steel absorber stack with 39 active layers:

- 38 active layers of 72*72 cm²
- 4 HCAL Base Units (HBUs) per module
 - 16 ASCIs (each with 36 channels)
 - 576 channels (tile size :3*3 cm²)
- 1 active Tokyo layer (Naoki talk)
 - Tile size: 6*6 cm²
- SiPMs mounted directly in the PCB

Module

Amine Elkhalii

CALICE Collaboration meeting, Utrecht 12.04.2019

AHCAL test beam at SPS

- Test beam has been done in June 2018 in the SPS in the H2 beam line.
- Tail catcher is sitting right behind the AHCAL.
- 1 pre-shower layer (1HBU) is front of the AHCAL.

AHCAL test beam at SPS

- Test beam has been done in June 2018 in the SPS in the H2 beam line.
- Tail catcher is sitting right behind the AHCAL.
- 1 pre-shower layer (1HBU) is front of the AHCAL.

tailcatcher

Data taking :

muons 40&120 GeV

electrons 10-100 GeV

negative pions 10-200 GeV

Amine Elkhalii

CALICE Collaboration meeting, Utrecht 12.04.2019

- Test the performance of the new SiPMs, tiles and readout system.
- AHCAL large prototype leads to demonstrate feasibility of mass production.
- Data taking with power pulsing mode.

- Test the performance of the new SiPMs, tiles and readout system.
- AHCAL large prototype leads to demonstrate feasibility of mass production.
- Data taking with power pulsing mode.

Muon data

- Pedestal extraction
- MIP Calibration
- High/Low Gain Intercalibration

LED run

- Gain Calibration
- High/Low Gain Intercalibration

- Test the performance of the new SiPMs, tiles and readout system.
- AHCAL large prototype leads to demonstrate feasibility of mass production.
- Data taking with power pulsing mode.

Muon data

- Pedestal extraction
- MIP Calibration
- High/Low Gain Intercalibration

Electron data

- Cross check the calibration constants
- Shower profile
- EM performance of the detector
- Tune the simulation parameters

LED run

- Gain Calibration
- High/Low Gain Intercalibration

- Test the performance of the new SiPMs, tiles and readout system.
- AHCAL large prototype leads to demonstrate feasibility of mass production.
- Data taking with power pulsing mode.

Muon data

- Pedestal extraction
- MIP Calibration
- High/Low Gain Intercalibration

Electron data

- Cross check the calibration constants
- Shower profile

. . .

- EM performance of the detector
- Tune the simulation parameters

LED run

- Gain Calibration
- High/Low Gain Intercalibration

Pions analysis

- Hadronic shower
- Shower separation

Data and Simulation comparison of electron

• cog_X vs cog_Y for data and simulation

Data and Simulation comparison of electron

- No selection is applied to the data.
- The energy_sum distribution of MC looks more narrow than the data.
- Observation of more hits in the data than simulation.

Data and Simulation comparison of electron

• Center of gravity in Z direction (cog_Z):

 $z_{\text{cog}} = \frac{\sum_{i=1}^{N_{\text{hits}}} E_i \cdot z_i}{\sum_{i=1}^{N_{\text{hits}}} E_i} \qquad \begin{array}{l} \text{Ei: energy deposit in the active cell} \\ \text{Zi: position of the active cell} \\ \text{Nhits: number of active cells} \end{array}$

• Looking to the center of gravity of the shower in Z, the simulation start showering slightly later than data.

• It might be that the beam line of the simulation is still missing some elements.

Setup of the beam line of June test beam

- Scintillator Sc1, Sc2, Sc3, Sc5 and Sc6 are used for trigger validation.
- Wire chamber WC1, WC2, WC3 and WC4 are used for beam tracking.

- The setup of the beam line is quite complex.
- The implementation of all the beam instrument in the simulation is difficult.
- Additional material will be implemented to the simulation to take the missing material in the beam line in account.

Tuning the thickness of the additional material in the beam line

- Additional material(steel) is implemented in the beam line of simulation to take the elements missing in H2 beam line at the SPS in account.
- Simulation is done for 3 different thicknesses of the steel: 8mm, 5mm and 2 mm.
- By looking to the center of gravity in Z of the shower we can check how much additional material we need in the beam line.
- The cog_Z distribution of the simulation with 2 mm of the steel as additional material looks superimposed on the data.
- 2 mm of steel (~ 0.14 Xo) will be the most relevant thickness for the simulation.

Tuning the thickness of the additional material in the beam line

- Check the center of gravity with 2 mm steel for different energies : 30 GeV, 60 GeV and 90 GeV
- We do not see any significant variation of the cog_Z for different energies.
- Which confirms that the relevant thickness of the additional material in the beam line is 2 mm of steel (~ 0.14Xo).

Tuning the position of the additional material

- Check if the position of the additional material has an influence on the simulation.
- Simulation with the additional material of steel (thickness : 2mm) in 3 different positions: pos_z1= - 0.41 m, pos_z2= - 20 m and pos_z3= - 47 m

Tuning the position of the additional material

- Increase of the number of hits for the case where the additional material is at 47 m.
- This increase is probably from the low energy radiation which happened while the interaction of the beam with the additional material.
- The energy_sum distribution is not affected by this radiation because of its low energy.
- Slight increase of the shower radius when the position is at -47 m.
- The relevant position of the additional material should be far from the detector at 47m.

Electron selection

- Contamination of electron data by hadrons and muons
- From the center of gravity in Z direction we can distinguish the hadrons which shower later than the electron and muons with number of hits ~ number of layers.

Electron selection

- Rejection of the contamination by cutting in the number of hits and cog_Z direction
- Defining the cuts from simulation and then applying the cuts to the data

Energy sum distribution for different energies

- The cuts on nhits and cog_Z didn't remove the whole tail on the left.
- The tail on the left can be from electron with low energy or also from hadrons.
- The resolution of MC distribution is too good comparing the data distribution.
- Dead cells, dead space between tile and the air gap between the slabs are not yet implemented in the simulation => excess in the energy sum !

Longitudinal shower profile for different energies

- After the cuts we observe a good agreement in the first 5 layers.
- From the ratio of 60 and 80 GeV we see a good agreement also in the latest layers, and difference of 3% to 6% in the 5 layers where the electron deposit most of their energy.

Hit Energy distribution for different energies

- Number of effective pixels used in the de-saturation is 2533 pixels (Olin talk)
- Hit energy distribution for data at low energy (10 GeV) looks similar to MC, but it's not the case for high energy
- This difference might be from the N-effective pixels
- Hit energy distribution need to be checked for each layer

Amine Elkhalii

CALICE Collaboration meeting, Utrecht 12.04.2019

Summary

- Electrons are an important data sample to cross check the calibrations and simulation parameters
- Tuning the additional material in the beam line lead to good agreement of cogZ for all beam energies
- Simple cut on nhits and cogZ improves situation, but does not remove the complete tail in the energy sums
- More detailed comparison needs selection of electron events

Outlook

- ParticleID (Vladimir) will be used to improve the event selection
- More investigation to understand the tail in the energy sums
- Further tuning of the simulation parameters if needed

Back up

SPIROC2E

Details of the SPIROC 2E chip

• Block scheme of one channel

- Spiroc2ESPIROC2E developed by Omega.
- 36 channels.
- Individual readout of 36 tiles.

Gain Selectron

- Two thresholds can be set in the SPIROC independently
- Trigger threshold defines at which input signal charge the spiroc triggers (fast shaper)
- Gain threshold defines at which input signal charge the HG or LG is results digitized (slow shaper)

Amine Elkhalii

Power pulsing

200ms 100µs x32 samples 1ms bunch (16 analogue stages ADC + TDC) train A/D conv detector sleep 150ms : readout of 24 SPIROCs in chain @ 3MHz ~ 3.2ms 20µs 'on' during data taking, enabled 20µs before 'start_acqt' pwr_a 1µs 'on' during conversion, enabled 1µs before 'start_conv_DAQb' pwr_adc 20µs 'on' during all operations pwr_d 20µs pwr_dac, switched off after conversion pwr_sca

Amine Elkhalii

Center of gravity in X & Y for MC and DATA

e-10 GeV

150

Amine Elkhalii

CALICE Collaboration meeting, Utrecht 12.04.2019

300

200

100

200 250 300 ahc_cogX [mm]

Nhits vs center of gravity in Z for different energies

Amine Elkhalii

CALICE Collaboration meeting, Utrecht 12.04.2019

Energy_sum (DATA &MC) for different energies

Hits distribution (DATA &MC) for different energies

