

Time Projection Chamber

Serguei GANJOUR

 $CEA\text{-}Saclay/IRFU,\ Gif\text{-}sur\text{-}Yvette,\ France$

On behalf of LCTPC Collaboration

ILD Collaboration Meeting KEK, Japan 25 - 26 February, 2019

TPC is the central tracker for International Large Detector (ILD)

- \blacksquare Large number of 3D points (\sim 200)
 - continuous tracking
- Particle identification
 - \Rightarrow dE/dx measurement
- Low material budget in front of the calorimeters (Particle Flow Algorithm)
 - \blacksquare barrel: $\sim 5\% X_0$
 - ${}^{\scriptstyle{\scriptstyle{|||}||}}$ endplates: $\sim 25\% X_0$

 \bowtie Two gas amplification options:

- ➡ Gas Electron Multiplier (GEM)
- MicroMegas (MM)
 - \rightarrow pad-based charge dispersion readout
 - \rightarrow direct readout by the TimePix chip

INFERT TPC Requirements in 3.5 T

- **Momentum resolution:**
 - $\rightarrow \delta(1/p_{\rm T}) \le 9 \times 10^{-5} {\rm GeV^{-1}}$
- ➡ Single hit resolution:
 - → $\sigma(\mathbf{r}\phi) \le 100 \mu \mathbf{m}$ (overall)
 - → $\sigma(Z) \simeq 400 \mu m$ at z=0
- **Tracking efficiency:**
 - ightarrow 97% for $p_T \geq 1 GeV$
- \Rightarrow dE/dx resolution: 5%

S.Ganjour

- Gravitational loads:
 - self-weight of structure: 895 kg
 - weight of modules: 1176 kg
 - → 84 modules
 - → 7 kg/super-module (4-ring)
 - \rightarrow endplate
 - ➡ total weight 2000 kg

 $\mathcal{O}(50\mu\mathrm{m})$ accuracy of the module positioning

8-ring: 4 modules combined in 1 super-module

Possibly need to fill windows by dummy modules to keep the stiffness and exchange them one by one in the grey room after assembly

S.Ganjour

TPC Field Cage

\mathbb{R} Overpressure 3 mbar

- pressure applied on the cage
- forces applied on each endplate with the pressure on modules

Requires a mandrel

- to shape the composite material (Kapton with copper strips)
- ➡ to install flanges

- studies different wall structures ongoing
 - \rightarrow glass fibers, glue, honeycomb

V2 TPC Large Prototype (LP)

S.Ganjour

Required resolution

- electric field homogeneity: $\Delta E/E \le 10^{-4}$
- high precision/stability of TPC field cage
- \mathbb{R} Large prototype (B=1 T):
 - \blacksquare axis alignment $\leq 0.1 \mathrm{mm}$
 - \blacksquare cathode/anode $\parallel \leq 0.15 mm$
 - **max. bending** \perp to Z (middle): $\sim 0.02 \mathrm{mm}$
 - \blacksquare less critical: length to 1mm and \varnothing to 0.7 mm

 \mathbb{I} ILD TPC (3.5x size/B field):

- \blacksquare axis alignment $\leq 0.3 \mathrm{mm}$
- \blacksquare cathode/anode $\parallel \le 0.45 \mathrm{mm}$
- ☞ Precise alignment of readout structures
 - \blacksquare all parts produced to a precision $\mathcal{O}(0.05 \text{ mm})$
 - stable aluminum backframe
 - well established with Millepede II (test beam)

TPC Interfaces

- ☞ Very High Voltage for the central cathode:
 - wery big cable (insulation)
 - me curvature radii 70mm to 280mm
- IS Low-voltage power:
 - ➡ bundles of 10 copper cables
 - \rightarrow 6mm² section (32 A)
 - 6 sectors per end-plate:
 - 120 cables, 12kW(100 W per cable)
 - 20 m cables (R=0.06 Ω) \rightarrow 60 W loss (60% of the useful power)
 - \rightarrow cable cooling? DC-DC converters?

Detector HV and fibres for readout are less demanding

Patch panels on each sector to allow disconnecting the TPC

Possibly need a jacket against heat from the ECAL

S.Ganjour

Pad size limits transverse resolution

use resistive anode to spread charge

Charge density function of time dependent charge dispersion on 2D continuous RC network:

$$ho(\mathrm{r,t}) = rac{\mathrm{RC}}{2\mathrm{t}} \exp[-rac{-\mathrm{r}^2\mathrm{RC}}{4\mathrm{t}}]$$

- R- surface resistivity
- C- capacitance/unit area

Relative fraction of charge seen by pads fitted by Pad Response Function (PRF)

MM: T2K readout concept: 72-channel AFTER chip (12-bit)

Triple GEM Modules

drift volume

Double GEM Modules

GEM: modified ALTRO readout

■ 16-channel ALTRO chip (10-bit)

Highly Pixelated Readout (TimePix)

IS Micromegas on a pixelchip

- insulating pillars between grid & pixelchip
- one hole above each pixel
- amplification directly above the pixelchip
- wery high single point resolution
- IS New QUAD design: Four-TimePix3
 - tested in a beam in Bonn (2.5 GeV e⁻)
 - improved chip protection against sparks

- 4 new Micromegas modules
 tested in November 2018 at
 DESY facility
 - \blacksquare new endplate LP2
 - \blacksquare 1-loop 2-Phase CO_2 cooling
 - improved mechanics: 99.9% good connections
 - mew grounding scheme: encapsulated resistive anode

S.Ganjour

Cooling of the electronic circuit is required due to power consumption

 $^{\hbox{\tiny I\!S\!S}}$ Temperature of the circuit rises up to 60°C

- cause a potential damage of electronics
- convect gas to TPC due to a pad heating
- INST A 2-Phase CO₂ cooling with the KEK cooling plant TRACI was provided to 7 MM modules during 2014/15 beam tests at DESY

 $1 \ge 2018$ tested with 4 modules in one loop

- \blacksquare 10°C at P=50 bar system operation
- about 30°C on the FECs was achieved during 11 days of continuous operation

2-phase CO_2 cooling support

- Thermal behavior and effect of cooling have been simulated
 - ➡ D.S. Bhattacharya et al.,
 JINST 10 P08001, 2015

S.Ganjour

- ILD TPC Requirements №
 - about 1kW heat transfer (half cilinder)
 - \rightarrow power pulsing at room T
 - → uniform pad plane temperature
 - less material comparing to existing experiments
- Saclay project "COSTARD"
 - cooling plate by metallic additive fabrication by laser using sintered powder of Al with a 0.8 mm innerdiameter serpentine
 - → test possibility to remove the powder residuals from the serpentine
 - → test pressure up to 100 bar
 - \rightarrow develop connection to pipes

Development of micro-channel cooling plate in PCB piping with 3D printing technology

Cooperation for industrial contacts for the **micro-cooling circuit** option

Prototype readout modules operate in a 1 T magnetic field

☞ Fit data with:

$$\sigma(\mathrm{z}) = \sqrt{\sigma_0^2 + rac{\mathrm{D}_\perp^2}{\mathrm{N}_{\mathrm{eff}}} \mathrm{z}}, \; \sigma_0^2 = \mathrm{b}^2/\mathrm{N}_{\mathrm{eff}}$$

- σ_0 the resolution at z = 0, N_{eff} - the effective number of electrons
- Magboltz calculations of D_⊥ at about 3% precision

Extrapolation to a magnetic field of 3.5 Tand 2.35 m drift length yield to a maximum $100 \ \mu\text{m}$ over the full drift length (tightly controlled gas quality and minimal impurities)

S.Ganjour

dE/dx Resolution

Measuring dE/dx resulution with LP and extrapolating to ILD TPC

- Test arbitrary track lengths by randomly combining hits from several real tracks to a pseudo track in test beam setup
- INST Estimated dE/dx resolution with 70% truncated mean for ILD TPC
 - GEM: σ_{dE/dx} = 4.1% for 220 hits
 → no degradation due to gating GEM
 → good agreement with simulation
 MM: σ_{dE/dx} = 4.5% for 170 hits
 → no degradation due to resistive foil

Inverse sqrt method for Triple GEM:

- $\blacksquare \sigma_{\rm dE/dx} = 4.2\%$ for 220 hits (large ILD)
- $rac{}{}$ $\sigma_{\rm dE/dx} = 4.8\%$ for 165 hits (small ILD)

Non-uniform E-field near module boundaries induces ExB effects

- Track distortions in standard scheme
 - \blacksquare reach about 0.5 mm at boundaries

 \rightarrow worth to minimize at design level

- accounted as systematic residual offsets
- determined on a row-by-row basis
- ``` correct residuals to zero at ${
 m about}~20\mu{
 m m}$

 $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}}\xspace}$ Good agreement with simulations

- E and B field inhomogeneity at module boundaries and near the edges of the magnet
- refine the simulation is ongoing

Crucial step toward possible countermeasures was done in 2018

- INSERVICE New scheme to reduce distortions at the edges of modules
 - mesh at ground
 - \rightarrow same potential as the frame
 - \blacksquare resistive anode at the +ve HV
 - the amplification field can be tuned independently of the drift field
 - the gains can be equalized while keeping the drift field very uniform

S.Ganjour

QUAD test beam in Bonn (October 2018)

QUAD single hit resolution

Dackilow

Ion Space Charge can deteriorate the position resolution of TPC

- Primary ions yield distortions in the E-field which result to $O(\leq 1\mu m)$ track distortions
- Secondary ions yield distortions from backflowing ions generated in the gas-amplification region:
 - 60 μm for IBFxGain=3 for the case of 2 ion disks

S.Ganjour

Gating: open GEM to stop ions while keeping transparency for electrons

A large-aperture gate-GEM with honeycomb-shaped holes

The ions must be stopped before penetrating too much the drift region The device to stop them must be transparent to electrons

Electron transmission rate as a function of GEM voltage measured with Fe^{55}

Measurement using ⁵⁵Fe

We measured the signals with the normal and reversed drift fields for each ΔV .

Extrapolation to 3.5 T shows acceptable transmission for electrons (80%) Simulation shows that ion stopping power better than 10⁻⁴ at 10 V reversed biases

- INFIGURE The results are consistent with no more degradation than expected (10%)
 - M. Kobayashi, et al.,
 NIM A (918), 41-53

S.Ganjour

- Image A lot of experience has been gathered in building and operating MPGD TPC panels within the LCTPC collaboration
- Image The characteristics of the MPGD studied in detail, results indicate that it meets ILC requirements
 - The R&D work is in a phase of engineering toward the final design of a TPC for the ILD detector

Real Highlights 2018 for ILD TPC

- wall structure, new solution for TPC fastening
- **ILD integration studies:** interfaces, scheme to assemble and test the detector in Kitakami, revision of the costing
- R&D and analysis: dE/dx studies for 4 technologies, gating, new beam tests, distortion studies, 2-track separation

Backup

International Linear Collider (ILC) project in Japan:

- energy range (baseline design): staged project starting at 250 GeV
- ILC is planned with two experiments
- TPC is the central tracker for International Large Detector (ILD)

ILD components:

- wertex detector
- me few layers of silicon tracker
- gaseous TPC
- **ECAL/HCAL/FCAL**
- superconducting coil (3.5 T)
- muon chambers in iron yoke

ILD requirements:

- momentum resolution: $\delta(1/{
 m p_T}) \leq 2 imes 10^{-5} {
 m GeV^{-1}}$
- \blacksquare impact parameters: $\sigma(\mathbf{r}\phi) \leq 5\mu\mathbf{m}$
- ⇒ jet energy resolution: $\sigma_{\rm E}/{\rm E} \sim 3-4\%$

S.Ganjour

- A Time Projection Chamber (TPC) is a detector consisting of a cylindrical gas chamber and a position sensitive readout endcaps
- Image: The TPC acts as a 3D camera taking a snapshot of the passing particle
- Image: Second Secon
 - ★ XY position: charged particles ionize the gas, a longitudinal electric field causes ionization e⁻ to drift towards endcap where they are detected (transverse resolution)
 - Z position: measure time between ionization and detection multiply by drift velocity (longitudinal resolution)

$$rac{\sigma(\mathbf{p_T})}{\mathbf{p_T}} = \sqrt{rac{720}{\mathsf{N}+4}}(rac{\sigma_{\mathsf{x}}\mathbf{p_T}}{0.3\mathsf{BL}^2})$$

 $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}}\xspace}$ TPC point resolution is x10 worse than Si

- would need x100 more points
- met always practical
- Iarger tracking volume
- include 2 inner Si layers (SIT) and 1 outer Si layer (SET)

ILC flagship measurement ™

- ``` recoil mass $\mathrm{e^+e^-}
 ightarrow \mathrm{Z(ll)X}$
- \blacksquare driven by both beam spread (σ_{B}) and momentum resolution (σ_{D})
 - → $\sigma_{\rm B} = 400~{
 m MeV}$ from TDR

$$ightarrow \sigma_{\mathsf{D}} = 300 \; \mathsf{MeV}$$
 at $\mathsf{R}_{\mathsf{out}} = 1.8 \; \mathsf{m}$

→
$$\sigma_{\mathsf{D}} = 400$$
 MeV at $\mathsf{R}_{\mathsf{out}} = 1.4$ m

regional Technology choise for TPC readout: Micro Pattern Gas Detector (MPGD)

- m no ExB effect, better ageing, low ionback drift
- easy to manufacture, MPGD more robust mechanically than wires
- \mathbb{R} Resistive Micromegas (MM)
 - MICROMEsh GAseous Structure
 - metalic micromesh (pitch ${\sim}50~\mu{
 m m}$)
 - \blacksquare supported by 50 μm pillars
 - multiplication between anode and mesh (high gain)

rs GEM

- Gas Electron Multiplier
- doublesided copper clad Kapton
- multiplication takes place in holes,
- 2-3 layers are needed to obtain high gain

Discharge probability can be mastered (use of resistive coatings, several step amplification, segmentation)

The test beam facility at DESY provides a 6 GeV electron beam

- Is Two options for endplate readout with pads:
 - \blacksquare GEM: 1.2x5.8 mm^2 pads
 - $\blacksquare MM: 3x7 \ mm^2$ pads

☞ Alternative:

pixel readout with pixel size ${\sim}55{\times}55~\mu{
m m}^2$ (newest)

Consists of a field cage equipped with an endplate with 7 windows to receive up to 7 fully equipped identical modules

LP readout modules operate in a 1 T magnetic field

Different layouts are considered for ILD: 4-wheel and 8-wheel scheme

dE/dx - High Granularity and Cluster Counting

- Charge on a track distance Landau distributed, number of ionizations Poisson distributed
 → smaller RMS → better correlation
 - $\rightarrow\,$ better particle identification
- Counting clusters allows for improved particle separation depending on cluster counting efficiency → high granularity
- Simulation studies (using GEM amplification)
 - Multiple (squared) pad sizes from 100 µm to 6 mm
 - Comparison of charge summation and cluster counting studying Pion-Kaon separation power
 - \rightarrow Cluster counting is working at high granularity (pads < 300 μ m)
 - Very good agreement on both edges of the studied spectrum, for classical pad readout as well as Timepix pixel readout results

Extrapolate to B=3.5T

Micromegas 3x7mm² pads and GEM 1.2x5.8mm² pads

Further studies toward the technology choice will be carried out with upgraded LP2

- new mechanical design of endplate: no space between modules
- new large area strip telescope within solenoid with Si sensor: (project LYCORIS)
 - → $10x10 \text{ cm}^2$ active area
 - → $320 \ \mu m$ thickness
 - → $0.3\%X_0$ material budget
 - → $25 \ \mu m$ strip pitch to meet momentum resolution
 - → integrated pitch adapter and digital readout (KPiX)

System is under final review before send off to production and funded by EU AIDA2020

