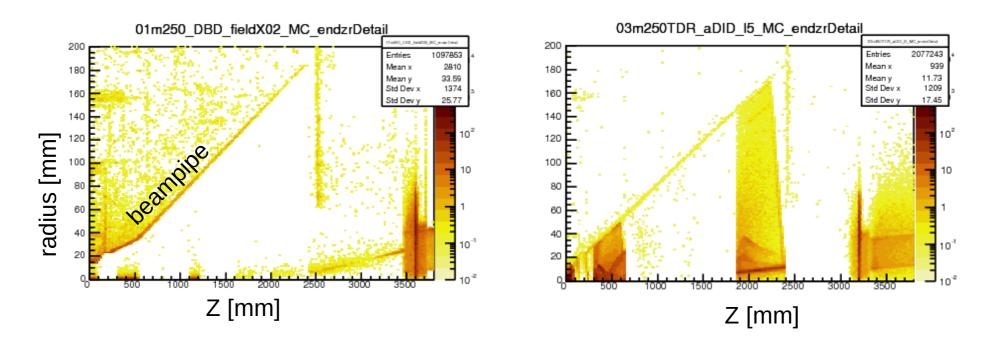
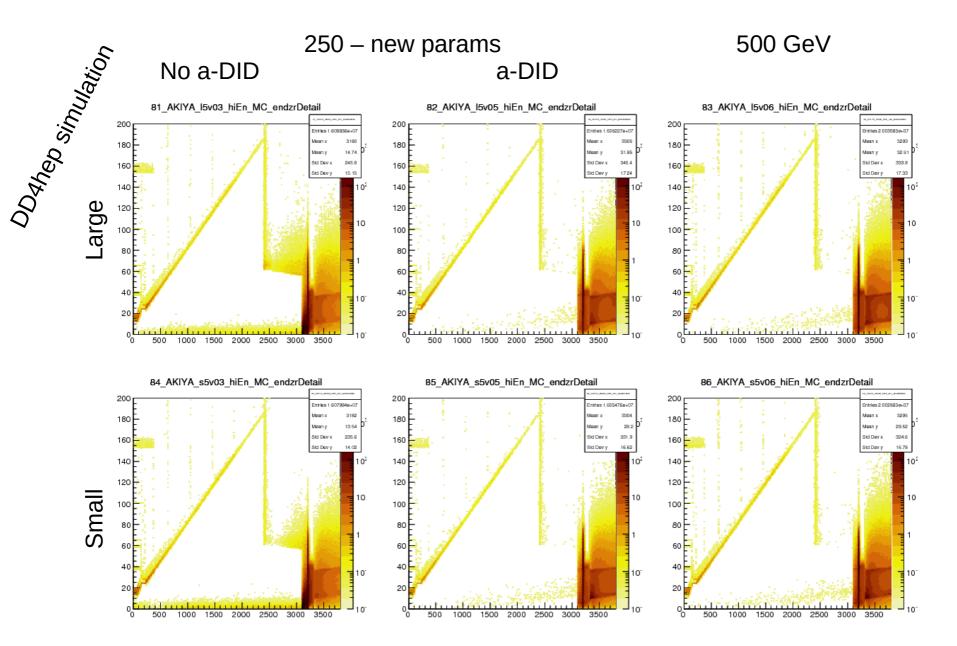
Anti-DID: impact on Backgrounds


Daniel Jeans, KEK ILD integration meeting, 12 Feb 2019

Pair background simulations


MC particle endpoints: z vs. r

DBD250 Mokka simulation

DD4hep simulation (standard parameters)

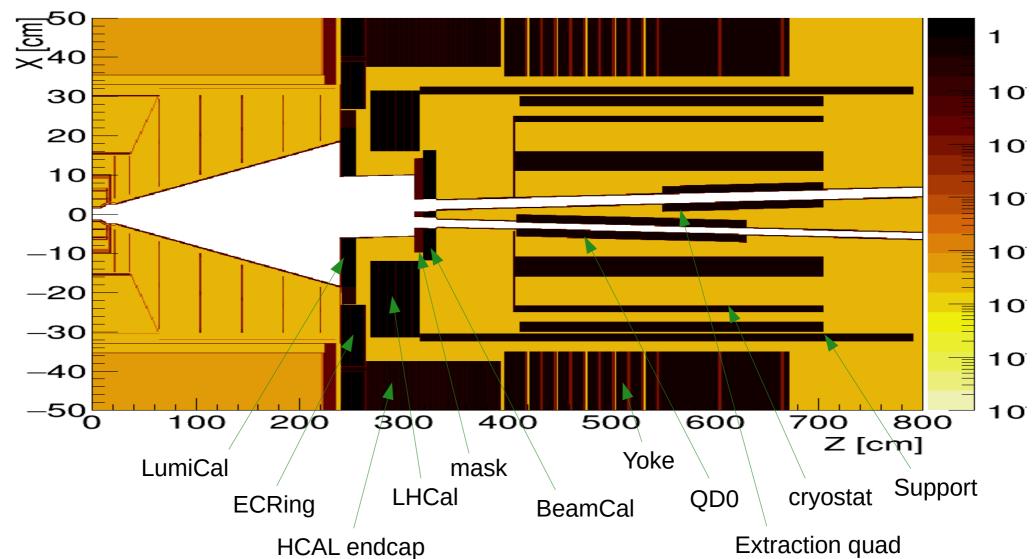
In both cases, many low momentum particles stop inside beampipe Geant4 "feature" in the extrapolation of particles in magnetic field Adjust Geant4 step sizes inside the beampipe volume to minimise these problems [reduce maximum step length from 10m to 10mm]

Now looks much more reasonable

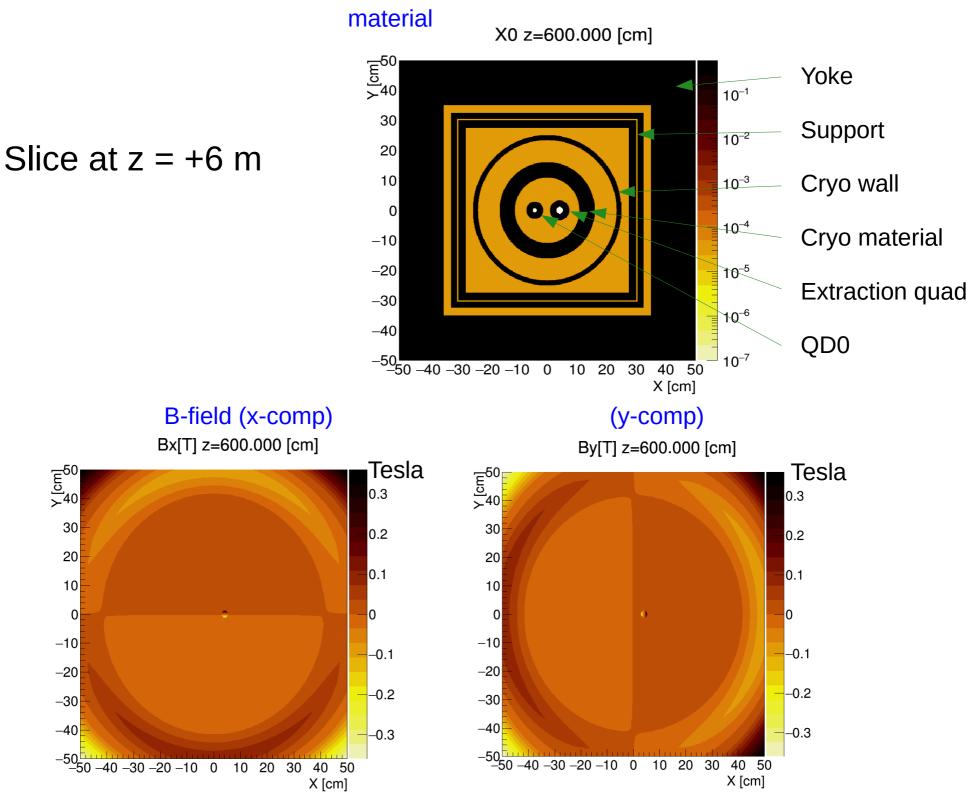
100 bunch crossings simulated with these simulation parameters [credit: A Miyamoto]

GuineaPig simulation, 250 GeV (new beam parameters), 500 GeV (TDR parameters)

[to improve efficiency of simulation, initial particles with E<2 MeV are cut: these give only a per-mille level contribution to the number of detector hits, while taking ~half the simulation time]

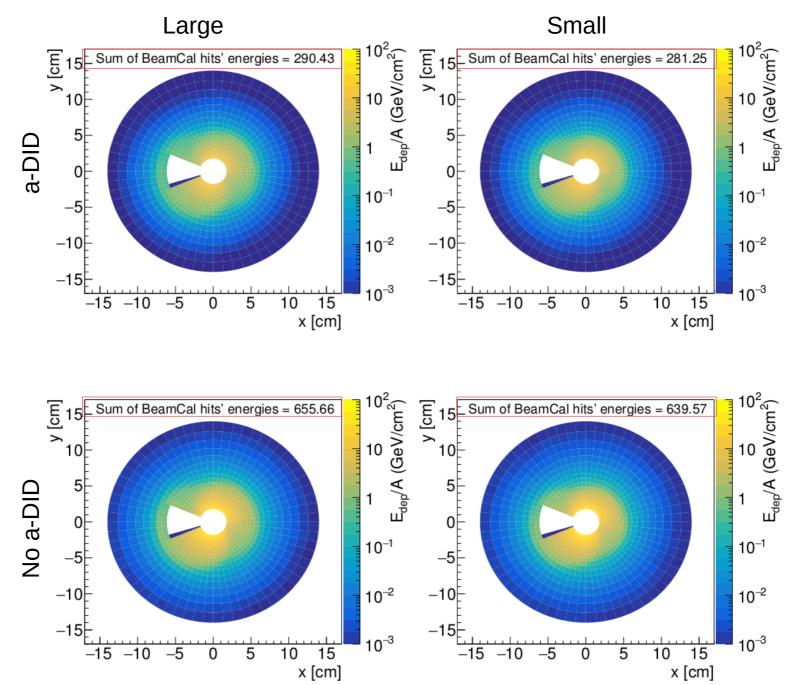

large & small models relatively detailed description of forward region

using detailed B-field maps


with and without anti-DID field

Look at simulated hits in the various detectors

Material in the simulation


X0 y= 0.010 [cm]

First, look at BeamCal energy deposit

Anti-DID designed to steer BS pairs into outgoing beampipe

Energy distribution in the BeamCal : effect of anti-DID field

by eye, a-DID better centres the energy deposit around BeamCal center (outgoing beampipe)
anti-DID reduces total BeamCal energy by factor >2

Simulation seems reasonable,

implemented anti-DID seems to do something reasonable, \rightarrow let's look at hits in the tracking detectors

				large	e det	ector							smal	l dete	ector			
	ILD)_l5_v	v03	ILI	D_l5_	v05	ILD)_l5_v	706	ILD	_s5_v	v03	ILD_s5_v05			ILD	_s5_v	v06
energy		250		250			500		250		250				500			
anti-DID	no		yes			yes			no			yes		yes				
VXD 1	1402	\pm	778	914	\pm	364	1279	\pm	138	1324	\pm	824	869	\pm	437	1296	\pm	764
VXD 2	971	\pm	558	545	\pm	207	733	\pm	107	927	\pm	595	494	\pm	246	724	\pm	413
VXD 3	151	\pm	77	129	\pm	60	162	\pm	50	140	\pm	82	111	\pm	61	138	\pm	73
VXD 4	111	\pm	59	107	\pm	53	125	\pm	43	97	\pm	57	88	\pm	53	105	\pm	59
VXD 5	44	\pm	30	40	\pm	26	45	\pm	24	41	\pm	30	32	\pm	26	43	\pm	28
VXD 6	39	\pm	27	34	\pm	24	38	\pm	20	35	\pm	28	27	\pm	20	38	\pm	26
FTD 1	42	\pm	30	38	\pm	26	46	\pm	10	35	\pm	29	30	±	22	37	\pm	29
FTD 2	27	\pm	19	24	\pm	15	29	\pm	7	22	\pm	19	19	\pm	14	24	\pm	19
FTD 3	62	\pm	45	40	\pm	27	64	\pm	13	57	\pm	48	36	\pm	30	57	\pm	51
FTD 4	42	\pm	33	25	\pm	17	45	\pm	9	40	\pm	35	25	\pm	20	41	\pm	38
FTD 5	29	\pm	23	18	\pm	13	30	\pm	7	29	\pm	24	17	\pm	13	29	\pm	27
FTD 6	16	\pm	13	9	\pm	7	16	\pm	5	15	\pm	14	9	\pm	8	16	\pm	14
FTD 7	10	\pm	8	6	\pm	5	10	\pm	4	8	\pm	7	5	\pm	5	10	\pm	9
SIT 1	51	\pm	37	24	\pm	16	41	\pm	9	52	\pm	40	24	\pm	17	44	\pm	35
SIT 2	49	\pm	36	21	\pm	12	38	\pm	9	51	\pm	42	22	\pm	14	37	\pm	30
SIT 3	77	\pm	56	34	\pm	24	66	\pm	11	79	\pm	64	36	\pm	25	69	\pm	60
SIT 4	71	\pm	54	31	\pm	21	62	\pm	12	76	\pm	61	- 33	\pm	26	65	\pm	57
SET 1	39	\pm	28	15	\pm	10	29	\pm	6	42	\pm	35	18	\pm	14	35	\pm	30
SET 2	46	\pm	36	18	\pm	12	33	\pm	6	52	\pm	42	21	\pm	16	40	\pm	33

(mean # hits per bunch) ± (bunch-to-bunch variation [RMS])

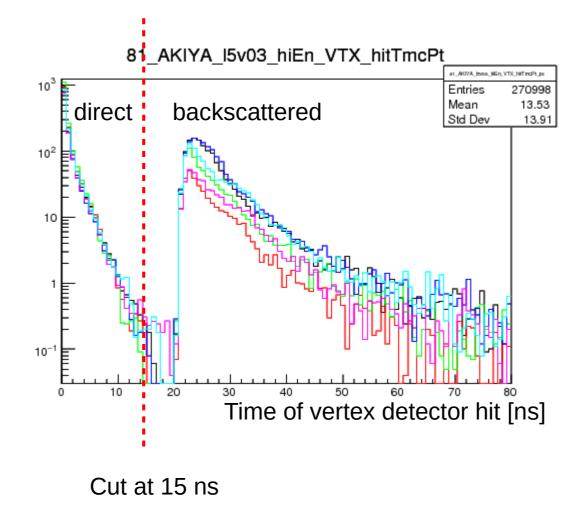
		large detector										small detector								
	ILD)_l5_v	703	ILI	D_l5_	v05	ILD)_15_v	706	ILD_s5_v03		ILI	D_s5_	v05	ILD	_s5_v	706			
energy		250		250		500		250		250				500						
anti-DID		no		yes			yes			no		yes			yes					
VXD 1	1402	\pm	778	914	\pm	364	1279	\pm	138	1324	\pm	824	869	\pm	437	1296	\pm	764		
VXD 2	971	\pm	558	545	\pm	207	733	\pm	107	927	\pm	595	494	\pm	246	724	\pm	413		
VXD 3	151	\pm	77	129	\pm	60	162	\pm	50	140	\pm	82	111	\pm	61	138	\pm	73		
VXD 4	111	\pm	59	107	\pm	53	125	\pm	43	97	\pm	57	88	\pm	53	105	\pm	59		
VXD 5	44	\pm	30	40	\pm	26	45	\pm	24	41	\pm	30	32	\pm	26	43	\pm	28		
VXD 6	39	\pm	27	34	\pm	24	38	\pm	20	35	\pm	28	27	\pm	20	38	\pm	26		
FTD 1	42	\pm	30	38	\pm	26	46	\pm	10	35	\pm	29	30	\pm	22	37	\pm	29		
FTD 2	27	\pm	19	24	\pm	15	29	\pm	7	22	\pm	19	19	\pm	14	24	\pm	19		
FTD 3	62	\pm	45	40	\pm	27	64	\pm	13	57	\pm	48	36	\pm	30	57	\pm	51		
FTD 4	42	\pm	33	25	\pm	17	45	\pm	9	40	\pm	35	25	\pm	20	41	\pm	38		
FTD 5	29	\pm	23	18	\pm	13	30	\pm	7	29	\pm	24	17	\pm	13	29	\pm	27		
FTD 6	16	\pm	13	9	\pm	7	16	\pm	5	15	\pm	14	9	\pm	8	16	\pm	14		
FTD 7	10	\pm	8	6	\pm	5	10	\pm	4	8	\pm	7	5	\pm	5	10	\pm	9		
SIT 1	51	\pm	37	24	\pm	16	41	\pm	9	52	\pm	40	24	\pm	17	44	\pm	35		
SIT 2	49	\pm	36	21	\pm	12	38	\pm	9	51	\pm	42	22	\pm	14	37	\pm	30		
SIT 3	77	\pm	56	34	\pm	24	66	\pm	11	79	\pm	64	36	\pm	25	69	\pm	60		
SIT 4	71	\pm	54	31	±	21	62	±	12	76	±	61	33	±	26	65	\pm	57		
SET 1	39	\pm	28	15	\pm	10	29	\pm	6	42	\pm	35	18	\pm	14	35	\pm	30		
SET 2	46	\pm	36	18	\pm	12	33	\pm	6	52	\pm	42	21	\pm	16	40	\pm	33		

(mean # hits per bunch) ± (bunch-to-bunch variation [RMS])

Most hits are in the inner vertex detector layers Adding an a-DID field reduces the total number of hits in these layers by \sim 35%

				large	e det	ector				small detector								
	ILD)_l5_v	v03	ILI	D_l5_	v05	ILD	ILD_15_v06		ILD_s5_v03			ILD_s5_v05			ILD	_s5_v	/06
energy		250		250		500		250			250			500				
anti-DID	no		yes			yes			no		yes			yes				
VXD 1	1402	\pm	778	914	\pm	364	1279	\pm	138	1324	\pm	824	869	\pm	437	1296	\pm	764
VXD 2	971	\pm	558	545	\pm	207	733	\pm	107	927	\pm	595	494	\pm	246	724	\pm	413
VXD 3	151	\pm	77	129	\pm	60	162	\pm	50	140	\pm	82	111	\pm	61	138	\pm	73
VXD 4	111	\pm	59	107	\pm	53	125	\pm	43	97	\pm	57	88	\pm	53	105	\pm	59
VXD 5	44	\pm	30	40	\pm	26	45	\pm	24	41	\pm	30	32	\pm	26	43	\pm	28
VXD 6	39	\pm	27	34	\pm	24	38	\pm	20	35	\pm	28	27	\pm	20	38	\pm	26
FTD 1	42	\pm	30	38	\pm	26	46	\pm	10	35	\pm	29	30	\pm	22	37	\pm	29
FTD 2	27	\pm	19	24	\pm	15	29	\pm	7	22	\pm	19	19	\pm	14	24	\pm	19
FTD 3	62	\pm	45	40	\pm	27	64	\pm	13	57	\pm	48	36	\pm	30	57	\pm	51
FTD 4	42	\pm	33	25	\pm	17	45	\pm	9	40	\pm	35	25	\pm	20	41	\pm	38
FTD 5	29	\pm	23	18	\pm	13	30	\pm	7	29	\pm	24	17	\pm	13	29	\pm	27
FTD 6	16	\pm	13	9	\pm	7	16	\pm	5	15	\pm	14	9	\pm	8	16	\pm	14
FTD 7	10	\pm	8	6	\pm	5	10	\pm	4	8	\pm	7	5	\pm	5	10	\pm	9
SIT 1	51	\pm	37	24	\pm	16	41	\pm	9	52	\pm	40	24	\pm	17	44	\pm	35
SIT 2	49	\pm	36	21	\pm	12	38	\pm	9	51	\pm	42	22	\pm	14	37	\pm	30
SIT 3	77	\pm	56	34	\pm	24	66	\pm	11	79	\pm	64	36	\pm	25	69	\pm	60
SIT 4	71	\pm	54	31	\pm	21	62	\pm	12	76	\pm	61	33	\pm	26	65	\pm	57
SET 1	39	\pm	28	15	\pm	10	29	\pm	6	42	\pm	35	18	\pm	14	35	\pm	30
SET 2	46	\pm	36	18	\pm	12	33	\pm	6	52	\pm	42	21	\pm	16	40	\pm	33

(mean # hits per bunch) ± (bunch-to-bunch variation [RMS])


Relative effect a-DID on outer tracking detectors is larger (about a factor 2), but there are rather few hits due to pair backgrounds in these detectors

Convert to <u>average</u> hit densities in different layers

ILD_15_v05	hi	ts/B	X	hits/	$/\mathrm{BX/cm^2}$		
	mean	\pm	RMS	mean	±	RMS	
VXD 1	914	\pm	364	6.64	±	2.65	
VXD 2	545	\pm	207	3.96	\pm	1.51	
VXD 3	129	\pm	60	0.213	\pm	0.100	
VXD 4	107	\pm	53	0.177	\pm	0.088	
VXD 5	40	\pm	26	0.043	\pm	0.029	
VXD 6	34	\pm	24	0.037	\pm	0.026	
FTD 1	38	\pm	26	0.0432	\pm	0.0302	
FTD 2	24	\pm	15	0.0288	\pm	0.0194	
FTD 3	40	\pm	27	0.0142	\pm	0.0099	
FTD 4	25	\pm	17	0.0095	\pm	0.0066	
FTD 5	18	\pm	13	0.0072	\pm	0.0054	
FTD 6	9	\pm	7	0.0042	\pm	0.0035	
FTD 7	6	\pm	5	0.0034	\pm	0.0031	
SIT 1	24	\pm	16	0.00324	\pm	0.00229	
SIT 2	21	\pm	12	0.00289	\pm	0.00170	
SIT 3	34	\pm	24	0.00137	\pm	0.00100	
SIT 4	31	\pm	21	0.00128	\pm	0.00086	
SET 1	15	\pm	10	0.000030	\pm	0.000020	
SET 2	18	\pm	12	0.000035	\pm	0.000024	

250 GeV, large detector, with a-DID field

large hit densities only in first 2 vertex detector layers

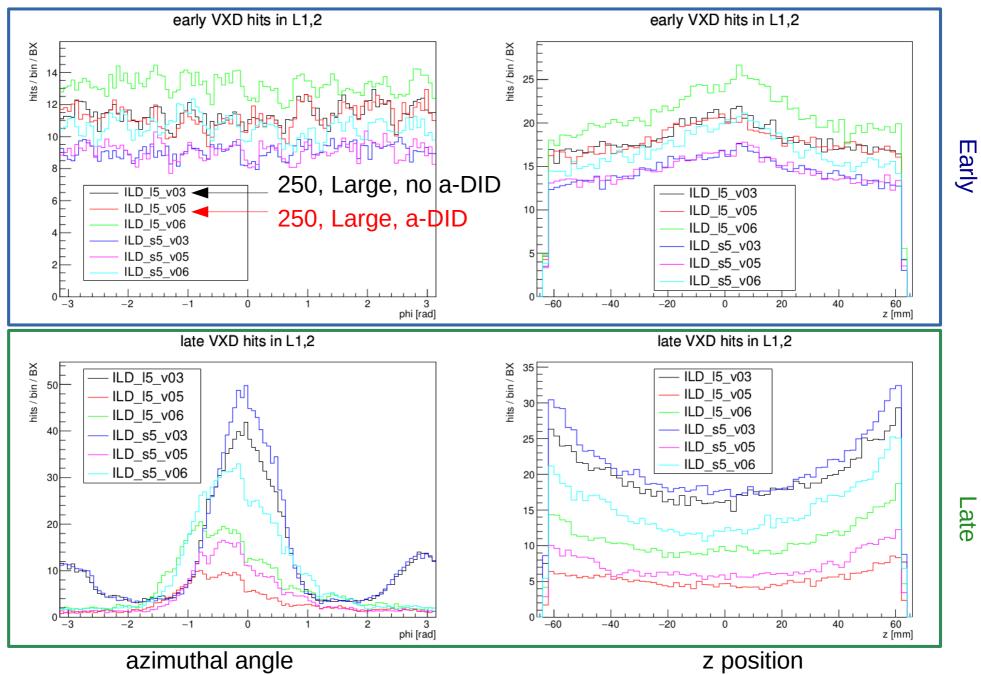
			VXD hits per BX	Layers	$s \ 1, \ 2$	Layer	3, 4	Layer	5, 6
				Early	Late	Early	Late	Early	Late
ge	250, no aDI	ID	ILD_l5_v03	1139	1234	213	48	64	19
arç.	250, aDI	ID	ILD_l5_v05	1125	334	222	14	69	6
	500, aDI	ID	ILD_l5_v06	1321	691	258	29	70	13
	250, no aDI	ID	ILD_s5_v03	909	1343	176	60	54	21
mall	250, aDI		ILD_s5_v05	910	453	177	22	52	7
S	500, aDI	ID	ILD_s5_v06	1057	963	206	38	63	18

		VXD hits per BX	Layers	$s \ 1, \ 2$	Layer	3, 4	Layer	5, 6
			Early	Late	Early	Late	Early	Late
ge	250, no aDID	ILD_l5_v03	1139	1234	213	48	64	19
arç	250, aDID	ILD_l5_v05	1125	334	222	14	69	6
	500, aDID	ILD_l5_v06	1321	691	258	29	70	13
	250, no aDID	ILD_s5_v03	909	1343	176	60	54	21
mall	250, aDID	ILD_s5_v05	910	453	177	22	52	7
S	500, aDID	ILD_s5_v06	1057	963	206	38	63	18

Less early hits in small model \rightarrow larger B-field

	VXD hits per BX	Layers	1, 2	Layer	3, 4	Layer 5, 6	
		Early	Late	Early	Late	Early	Late
ല്ല 250, no aDIE	ILD_l5_v03	1139	1234	213	48	64	19
ັອີ 250, aDIE	ILD_l5_v05	1125	334	222	14	69	6
→ 500, aDIE	ILD_l5_v06	1321	691	258	29	70	13
😑 250, no aDIE	ILD_s5_v03	909	1343	176	60	54	21
$\overset{\circ}{\underline{b}}$ 250, aDIE		910	453	177	22	52	$7 \mid$
ഗ 500, aDIE	ILD_s5_v06	1057	963	206	38	63	18

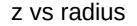
Applying a-DID reduced late hits in L1,2 by a factor 3 or 4


 \rightarrow less back-scatter since more beam exits detector

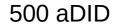
	VXD hits per BX	Layers	s 1, 2	Layer	3, 4	Layer	5, 6
		Early	Late	Early	Late	Early	Late
👷 250, no aDID	ILD_l5_v03	1139	1234	213	48	64	19
ບ, 250, aDID	ILD_l5_v05	1125	334	222	14	69	6
500, aDID	ILD_15_v06	1321	691	258	29	70	13
😑 250, no aDID	ILD_s5_v03	909	1343	176	60	54	21
250, no aDID E 250, aDID	ILD_s5_v05	910	453	177	22	52	$7 \mid$
ഗ 500, aDID	ILD_s5_v06	1057	963	206	38	63	18

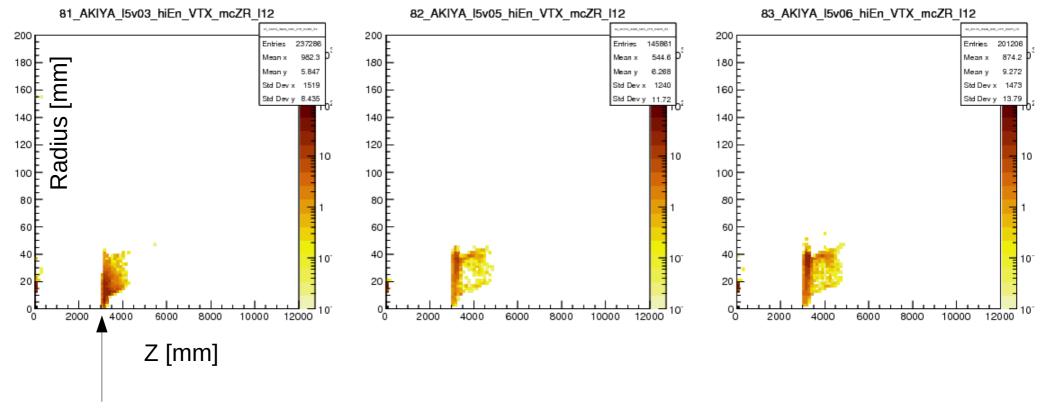
Applying a-DID reduced late hits in L1,2 by a factor 3 or 4 \rightarrow less back-scatter since more beam exits detector

Reduction in total number of L1,2 hits is < factor 2


Distribution of hits in first 2 vertex layers

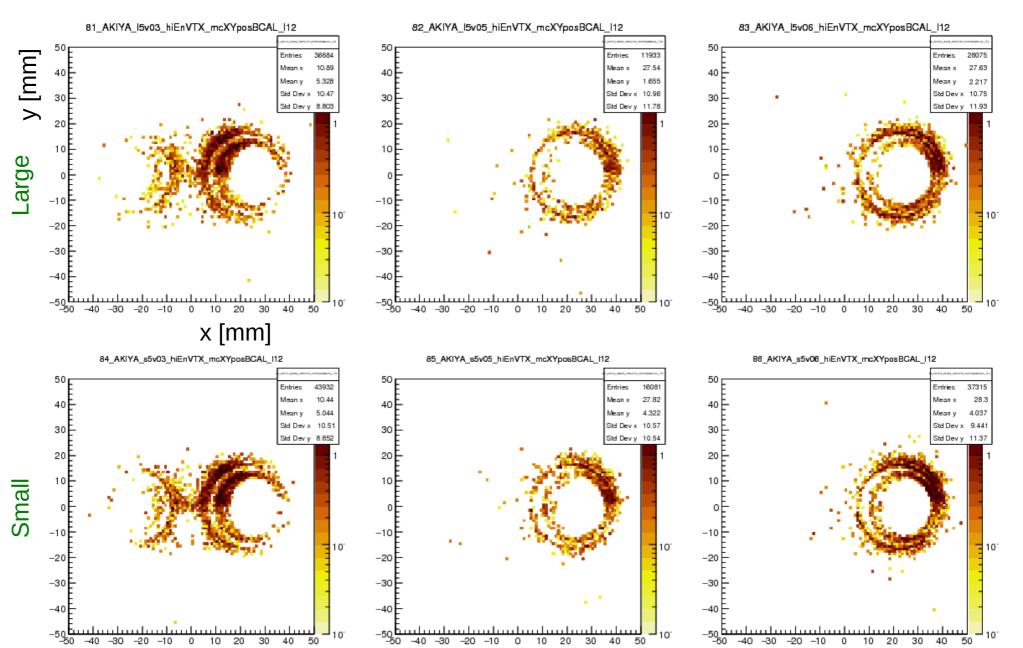
n.b. local hit densities can be significantly larger than average


Late


Production vertex of particles producing hits in VDX L1,2

250, no aDID

250 aDID

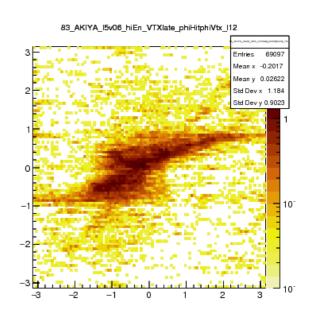


Production vertex [in the +z BeamCal region] of particles producing hits in VDX L1,2

250, no aDID

250 aDID

500 aDID


What causes strong phi-non-uniformity of late VXD hits

Late VXD hits L1,2

Phi of scattering point

(Phi of hit) vs. (phi from which particle backscattered)

500 aDID

Phi of VXD hit

0

-3 🛨

-3

-2

250 aDID

82 AKIYA I5v05 hiEn VTXlate phiHitphiVtx I12

33407

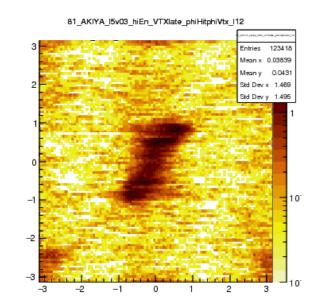
-0.17

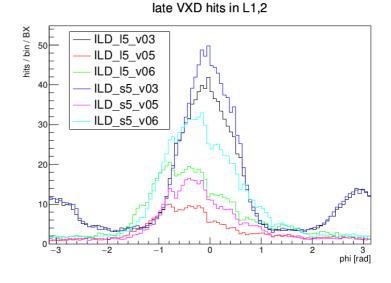
- 0.008999 1.273

0.9806

10

10


3


2

itd Day :

tici Dane v

250, no aDID

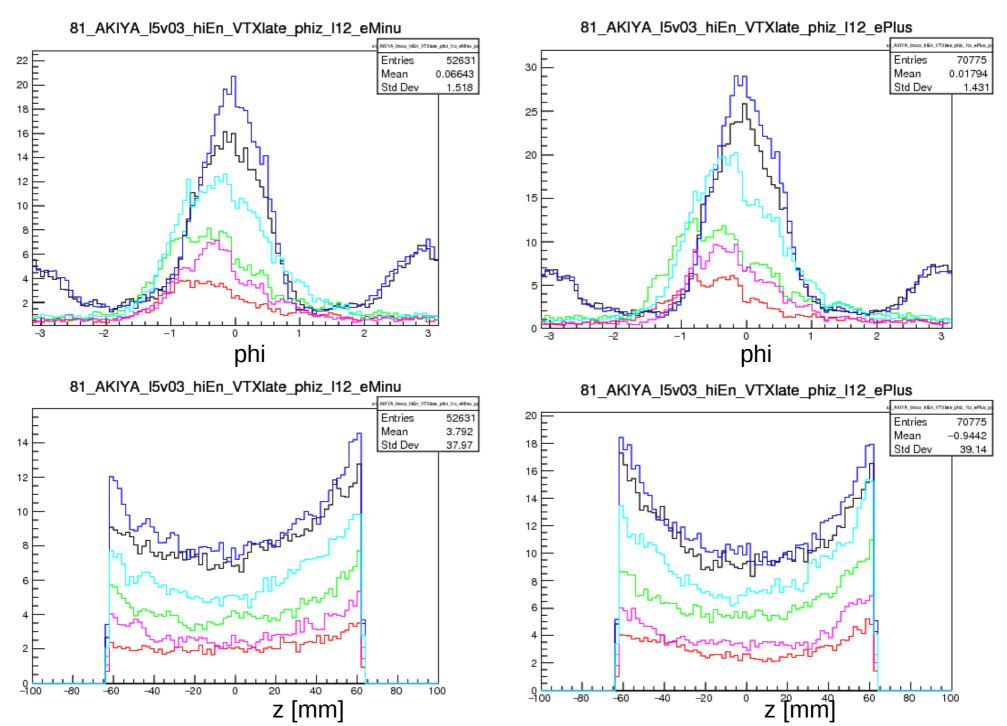
Summary

Simulation of beamstrahlung pair backgrounds is not trivial now seems more solid than in the past...

Using an anti-DID field:

reduces total energy in BeamCal by factor ~2

reduces vertex detector hits due to backscattered particles by factor 3-4


reduces total number of vertex detector by factor <2

VXD backgrounds strongly non-uniform,

 \rightarrow significantly more significant effects in some regions

Position of late VXD L1,2 hits produced by electrons

positrons

