# Status of Magnet Design Studies

#### 2019/2/12

#### Yasuhiro Makida, Takahiro Okamura

- Design study about ILD solenoid has been carried out with the cooperation of Hitach and Toshiba.
- Recently, a stress analysis due to solenoid coil EMF has been in progress to fix the thickness of an outer shell.
- Stress analysis by Hitach shows that stress in the coil with50 mm thick shell is 105 MPa.
- Toshiba is analyzing stress in the solenoid, which has smaller dimensions, because of realistic transportation.

### Outline of ILD magnet manufacturing process



### **Transportation Proposal by Toshiba**



Solenoid Transportation by "JUMBO CARRIER"



Anti-DID Transportation by low-floor trailer

- From view point of transportation from factory to ILC site, solenoid and anti-DID size are considered.
- Anti-DID is smaller and simpler, which meet the field requirement.
- Anti-DID coils are wound in a factory and are set on solenoid in an assembly build on-site.

## Coil Dimensions and Solenoid Field

|                                    | TDR & HITACHI                              | TOSHIBA      | ILD-Small |
|------------------------------------|--------------------------------------------|--------------|-----------|
| Coil Inner Radius (mm)             | 3615                                       | 3215         |           |
| Coil Outer Radius (mm)             | 3970                                       | 3570         |           |
| Length (mm) Each Block Length (mm) | 7350<br>2450                               | 7350<br>2450 |           |
| Turn × Layer                       | 309 X 4<br>300 × 4 (for gap b/w<br>module) | 330 × 5      |           |
| Nominal Current (A)                | 22400<br>23072 (in case 300 turn )         | 15339        |           |
| Current Density (A/mm²)            | 10.6                                       | 9.7          |           |
| Central Field (T)                  | 4.0                                        | 4.0          |           |
| Maximum Field (T)                  | 4.6                                        | 4.5          |           |
| Support Shell Thickness (mm)       | 50                                         | 10 – 100     |           |
| "Coil (Cryostat)" I. R. (mm)       |                                            | V            | 3075.33   |
| "Coil (Cryostat)" O. R. (mm)       |                                            |              | 3825.33   |
| Yoke I.R. (mm)                     |                                            |              | 4125      |

# Stress Analysis by HITACHI

### Field Check with Gap b/w Coil Block

by HITACHI with EMSolution



0.0

2.0

4.0

6.0

z(m)

8.0

10.0

12.0

### Field Check with Gap b/w Coil Block

#### by HITACHI with EMSolution



10

12

2

●電流一定 ▲起磁力一定

# Stress Analysis – Applied Load by HITACHI with EMSolution & ANSYS



| Coil Winding        | Radial | Circumferential | Axial |
|---------------------|--------|-----------------|-------|
| Young Modulus (GPa) | 66.8   | 74.2            | 62.6  |

# Stress Analysis – Displacement by HITACHI with EMSolution & ANSYS



# Stress Analysis – Stress by HITACHI with EMSolution & ANSYS

#### **Displacement Contour Map**

Tresca's yield condition (  $\sigma_{\phi}$ - $\sigma_{z}$ <Y ): 60~105 MPa



Shearing Stress (φz plane): max 1.3 MPa





## Stress Analysis by TOSHIBA

# Field and EMF in Coil by TOSHIBA very preliminary



# Stress Analysis by TOSHIBA with Nastran very preliminary



Thickness of 90 mm results in a von Mises stress of M 70 MPa

| Thickness<br>[mm] | σz [MPa] | σθ [MPa] | τθr [MPa] | τmax [MPa] | von Mises [MPa] | Δz [mm] | Δφ [mm] | Sum [mm] |
|-------------------|----------|----------|-----------|------------|-----------------|---------|---------|----------|
| 10                | -22.54   | 73.12    | 40.6      | 44.03      | 84.84           | 1.86    | 3.64    | 4.01     |
| 50                | -19.79   | 66.43    | 37.26     | 39.62      | 76.88           | 1.7     | 3.31    | 3.55     |
| 90                | -20.2    | 61.01    | 34.58     | 36.72      | 70.51           | 1.58    | 3.04    | 3.24     |
| 150               | -20.42   | 54.73    | 31.47     | 33.1       | 63.36           | 1.43    | 2.72    | 2.88     |
| 200               | -20.37   | 50.55    | 29.36     | 30.61      | 58.74           | 1.32    | 2.51    | 2.65     |

### Coil Dimensions and Solenoid Field

|                                       | TOSHIBA                  | ILD-S   |
|---------------------------------------|--------------------------|---------|
| Coil Inner Radius (mm)                | 3215                     |         |
| Coil Outer Radius (mm)                | 3570                     |         |
| Length (mm)<br>Each Block Length (mm) | 7350<br>2450             |         |
| Turn × Layer                          | 330 × 5                  |         |
| Nominal Current (A)                   | 15339 ( will be smaller) |         |
| Current Density (A/mm²)               | 9.7                      |         |
| Central Field (T)                     | 4.0                      |         |
| Maximum Field (T)                     | 4.5                      |         |
| Support Shell Thickness (mm)          | 10 – 100 (now analyzing) |         |
| "Coil (Cryostat)" I. R. (mm)          |                          | 3075.33 |
| "Coil (Cryostat)" O. R. (mm)          |                          | 3825.33 |
| "Coil (Cryostat)" Length (mm)         |                          | 7744    |

### Coil Dimensions and Solenoid Field





#### Solenoid dimensions:

| R0 [mm] | R1 [mm] | Z0 [mm] | Z1 [mm] | J [A/mm <sup>2</sup> ] |
|---------|---------|---------|---------|------------------------|
| 3215    | 3570    | -3675   | 3675    | 9.7                    |

#### Iron yoke dimensions:

| R0 [mm] | R1 [mm] | R2 [mm] | Z0 [mm] | Z1 [mm] | <b>Z2</b> [mm] | Z3 [mm] |
|---------|---------|---------|---------|---------|----------------|---------|
| 550     | 4595    | 7755    | -6620   | -4060   | 4060           | 6620    |

### Field and EMF in Coil by TOSHIBA



# Stress Analysis by TOSHIBA with Nastran 50 mm Thick Support Shell Case



Z [mm]



| Stress     | Unit | Coil    | Shell  | Joint   |
|------------|------|---------|--------|---------|
| Axial      | MPa  | -13.863 | -28.01 | -13.056 |
| Ноор       | MPa  | 61.64   | 53.72  | 55.51   |
| Shear(Rθ)  | MPa  | 1.837   | -9.63  | -0.631  |
| Shear Max  | MPa  | 36.598  | 34.59  | 30.965  |
| Von mieses | MPa  | 70.055  | 60.73  | 60.688  |

# Stress Analysis by TOSHIBA with Nastran Shell Thickness vs. Von Mises Stress







Criteria ( Yield Limit):

Conductor : 76 MPa (  $0.85\sigma_{0.2}$  )

# EMF b/w Coil and Shell 50 mm Thick Support Shell Case









# Summary & Study Plans

- HITACH has analyzed the stress in the coil due to EMF of solenoid.
  - Maximum stress in the coil with 50 mm thickness support shell is 105 MPa, which is lower than 150 MPa (CMS criteria).
- TOSHIBA has been analyzing the stress in the coil, which diameter is smaller.
  - 800 mm reduction , IR 3215 and B<sub>center</sub> = 4.0 T
  - 70 MPa with 50 mm thickness support shell
  - Cryostat Design -> ILD small dimensions.
- Smaller Al stabilized conductor for realistic manufacture.
  - Too large 74.3 X 22.4 mm<sup>2</sup> (TDR) -> CMS size 50 X 22 mm<sup>2</sup>
  - 4 layers -> 6 layers, 22.4 kA -> 15.0 kA
  - Radial thermal conductivity, quench characteristic.