
#### **Detector Utility**

2019/2/12 Yasuhiro Sugimoto @ILD Integration Meeting

#### **CFS** Schedule

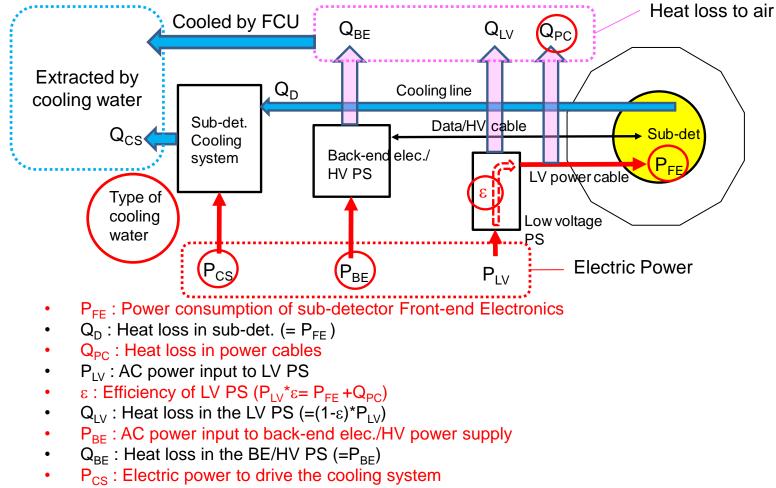
#### CFS timeline on "Pre- and Preparation Phase"



# CFS Schedule

- If a positive statement by Japanese government is made, ILC basic design linked to CFS has to be fixed by 2019 summer
- CFS Engineering Documents will be made in ~1 year based on this basic design
- Based on the CFS Engineering Documents, CFS detailed design will be made by civil engineering companies in ~3 years
- So, detector groups should clarify the requirements for the experimental hall and the utilities by 2019 summer

# Necessary utilities for detectors


- Electricity
- Heating, ventilation, air conditioning (HVAC)
- Cooling water
- Cryogenics for s.c. magnets
- Chamber gas
- (Network for data transfer)
- Sub-detector assembly building
- etc.

# **Utility Survey**

- Requirements for utilities for sub-detectors were surveyed in 2018
  - Electric power
  - Cooling water
  - Space
- Two rounds of the survey were made, but only 5 sub-detector groups responded
  - Vertex detector
  - TPC
  - ECAL
  - SDHCAL
  - AHCAL
- Requirements for other sub-detectors will be supplemented by Y.S. to estimate total necessary electric power and cooling water
  - Power consumption by sub-detectors is relatively small compared to magnet power
  - So, rough estimate on the sub-detector power consumption is OK

# **Utility Survey**

• 6 items for electricity/cooling water



• Q<sub>CS</sub> : Heat to be extracted from cooling system (= Q<sub>D</sub> + P<sub>CS</sub>)

#### ELECTRICITY

#### Basic concept

- On surface:  $275(154)kV \rightarrow (66kV) \rightarrow 6.6kV$
- 6.6kV AC is sent to underground USC through Utility Shaft
- In USC: 6.6kV → 400(3φ) / 200(3φ,1φ) / 100V(1φ)
- Power dissipation is eventually extracted by cooling water (→ cooling tower on surface)

#### Tentative estimation for ILD

| Item                |               | Power (kW) |                |     |         |  |  |  |  |
|---------------------|---------------|------------|----------------|-----|---------|--|--|--|--|
|                     | Power supply  | 150        |                |     |         |  |  |  |  |
| QD0/QF1/Crab cavity | Cold box      | 150        |                |     |         |  |  |  |  |
|                     | He Compressor | 300        | (Surface)      |     |         |  |  |  |  |
|                     | Power supply  | 250        |                |     |         |  |  |  |  |
| Detector Solenoid   | Cold box      | 50         |                |     |         |  |  |  |  |
|                     | He Compressor | 500        | (Surface)      |     |         |  |  |  |  |
|                     | Total         | 161        | FEE            | BEE | Cooling |  |  |  |  |
|                     | Muon          | 12         | 5              | 5   | 2       |  |  |  |  |
|                     | HCAL          | 45.5       | 27.5           | 8   | 10      |  |  |  |  |
|                     | ECAL          | 40         | 20             | 12  | 8       |  |  |  |  |
| Sub-detector        | VFC           | 9          | 2              | 5   | 2       |  |  |  |  |
| Sub-delector        | SET           | 9          | 2              | 5   | 2       |  |  |  |  |
|                     | TPC           | 16.2       | 15             | NA  | 1.2     |  |  |  |  |
|                     | SIT           | 8          | 1              | 5   | 2       |  |  |  |  |
|                     | FTD           | 8          | 1              | 5   | 2       |  |  |  |  |
|                     | VTX           | 13.5       | 2              | 10  |         |  |  |  |  |
| Computer farm       | 1000          | (Surface)  |                |     |         |  |  |  |  |
| Water pump          |               | 25         | (11kWx2+3.7kW) |     |         |  |  |  |  |
| HVAC                |               | 600        | (Surface, CMS) |     |         |  |  |  |  |
| Lighting            | 25            |            |                |     |         |  |  |  |  |
| Air compressor      | 50            | (Surface)  |                |     |         |  |  |  |  |
| Platform mover      | 100           |            |                |     |         |  |  |  |  |
| Crane for ILD       | 5t x 3        | 21         |                |     |         |  |  |  |  |
|                     | 40t           | 50         |                |     |         |  |  |  |  |
| Total               |               | 3432       |                |     |         |  |  |  |  |
| Underground         | 1282          |            |                |     |         |  |  |  |  |

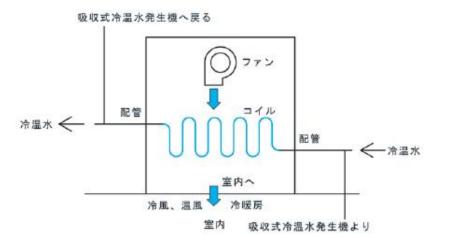
Sub-detectors:

Y.S.'s guess (based on TDR description, if exists) except for HCAL, ECAL, TPC, and VTX

Not listed:

- Infrastructure in assembly halls
- Computers for rec/ana/sim.
- Office building
- Cooling tower and chiller on surface

# Comparison with other study


|                   | CMS  | CLIC | SiD | ILD  |
|-------------------|------|------|-----|------|
| Detector Solenoid | 900  | 900  | 294 | 800  |
| QD0/QF1/CC        | NA   | NA   | NA  | 600  |
| FEE               | 600  | <10  | 12  | 75   |
| BEE               | 650  | <10  | 70  | 47   |
| PC farm           | 800  | 1000 | NA  | 1000 |
| DH utility        | NA   | NA   | 105 | 246  |
| Cooling           | 850  | 750  | NA  | 65   |
| HVAC              | 600  | 600  | NA  | 600  |
|                   |      |      |     |      |
| Sum               | 4400 | 3250 | 481 | 3432 |

- He compressor is not included in SiD Detector Solenoid
- Cranes and lighting are not included in SiD DH utility
- CMS and CLIC data is taken from LCD-Note-2013-011

#### **COOLING WATER**

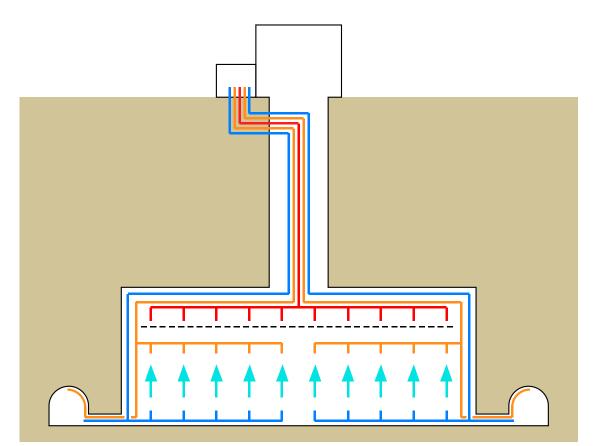
#### Basic concept

- Two types of water are supplied from surface
  - Normal temp. water: T~30 °C, ∆T~10 °C
  - Chilled water: T~10 °C,  $\Delta$ T~5 °C (TBD)
  - High pressure due to  $\Delta h$ ~100m can be isolated by heat exchangers in USC
- Sub-detectors are cooled by sub-detector cooling systems
  - Coolant could be CO2, water, air, or something else
  - Sub-detector cooling systems are cooled by cooling water
- Electronics racks are cooled by fan-coil units
  - Cool air flow generated by chilled water removes heat, and returns to room temperature

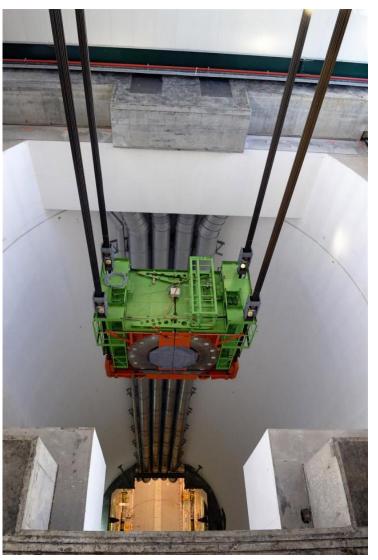


#### Schematic Cooling Cooling Surface Tower Tower Chiller ~15°C ~40°C .30°C ~10°C Underground Chilled water Normal temp. water Fan-coil units Sub-det. Cooling $\triangleright$ $\geq$ (electronics racks) systems Sub-det. Cooling systems Low-conductivity water ▶ ρ>1MΩcm Magnet power supply

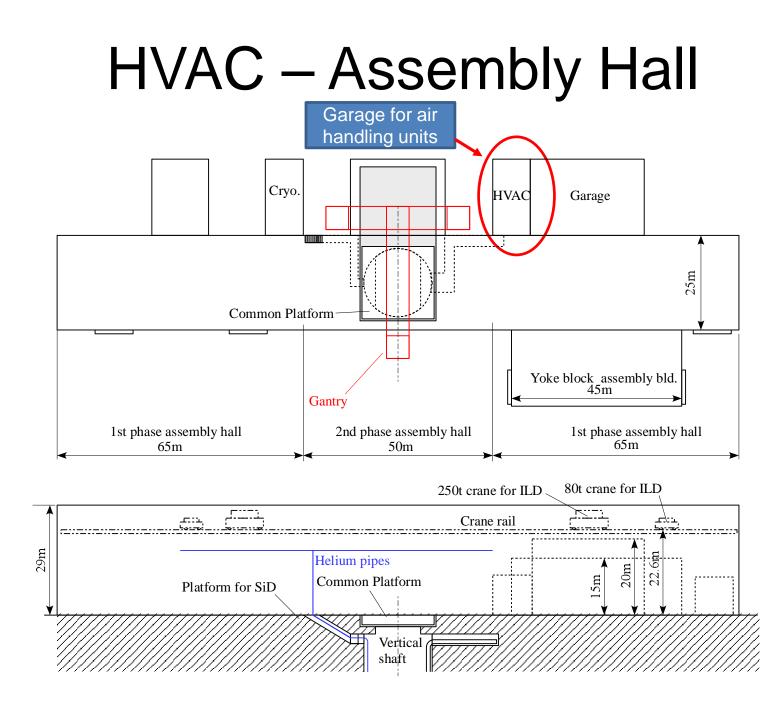
### Requirement


#### Cooling water for underground facilities

|                          |              | Chilled Water |               |                 | Low-conductive Water |                          |            | Normal Water |     |               |                          |
|--------------------------|--------------|---------------|---------------|-----------------|----------------------|--------------------------|------------|--------------|-----|---------------|--------------------------|
| Item                     |              | Heat<br>(kW)  | dT            | Flow<br>(L/min) | Heat<br>(kW)         | dT                       | Flow (L/m) | Heat<br>(kW) | d I | Flow<br>(L/m) |                          |
| QD0/QF1/CC               | Power supply |               |               |                 | 150                  | 10                       | 214        |              |     |               |                          |
|                          | Cold box     |               |               |                 | 150                  | 10                       | 214        |              |     |               |                          |
| Detector                 | Power supply |               |               |                 | 250                  | 10                       | 357        |              |     |               |                          |
| Solenoid                 | Cold box     |               |               |                 | 50                   | 10                       | 71         |              |     |               |                          |
| Sub-detector             | Muon         | 12            | 5             | 34              |                      |                          |            |              |     |               |                          |
|                          | HCAL         | 45.5          | 5             | 130             |                      |                          |            |              |     |               |                          |
|                          | ECAL         | 40            | 5             | 114             |                      |                          |            |              |     |               |                          |
|                          | VFC          | 9             | 5             | 26              |                      |                          |            |              |     |               |                          |
|                          | SET          | 9             | 5             | 26              |                      |                          |            |              |     |               |                          |
|                          | TPC          | 3             | 5             | 9               |                      |                          |            | 13           | 5   | 38            | NW for precision chiller |
|                          | SIT          | 8             | 5             | 23              |                      |                          |            |              |     |               |                          |
|                          | FTD          | 8             | 5             | 23              |                      |                          |            |              |     |               |                          |
|                          | VTX          | 13.5          | 5             | 39              |                      |                          |            |              |     |               |                          |
| Pump                     |              | 11            | 5             | 31              | 11                   | 10                       | 16         | 3.7          | 5   | 11            |                          |
| Cubicle (AC transformer) |              | 64            | 5             | 183             |                      |                          |            |              |     |               | 95% efficiency, FCU      |
| Total                    |              | 223           |               | 637             | 611                  |                          | 873        | 17           |     | 48            |                          |
| Primary Loop             | Primary Loop |               | Chilled Water |                 |                      | Normal Temperature Water |            |              |     |               |                          |
|                          | 637          |               |               |                 | 921                  |                          |            |              |     |               |                          |


#### HVAC

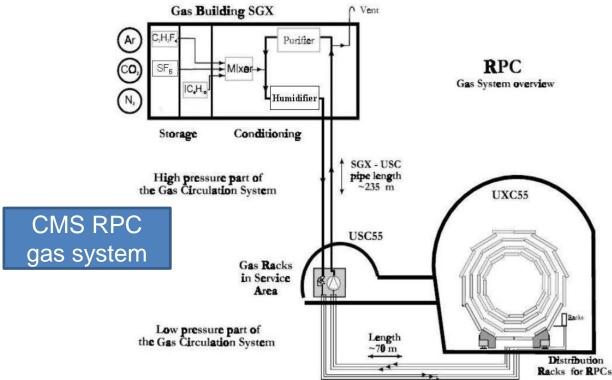
# HVAC


- Air handling units on surface (next to assembly hall)
- Air ducts through main shaft
- Necessary capacity has not been studied yet



#### HVAC - CMS



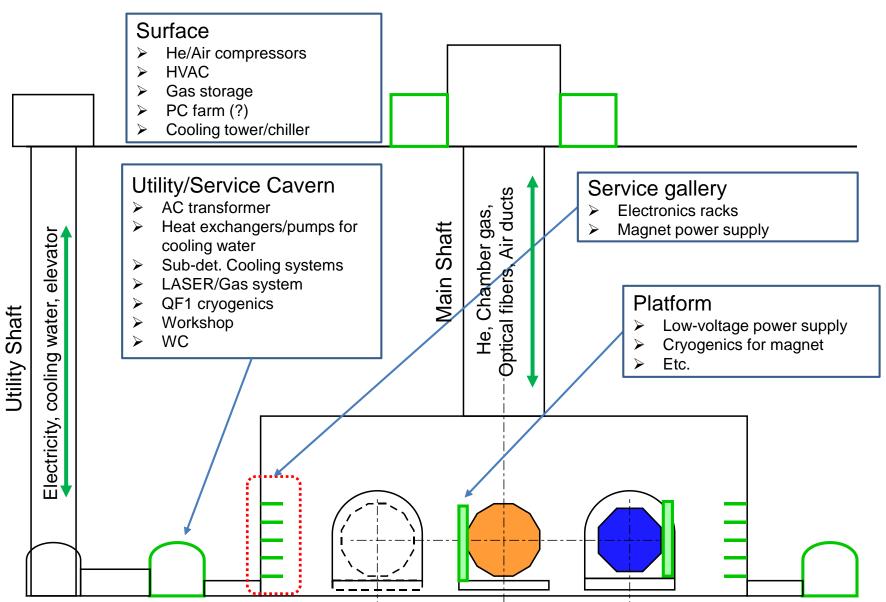




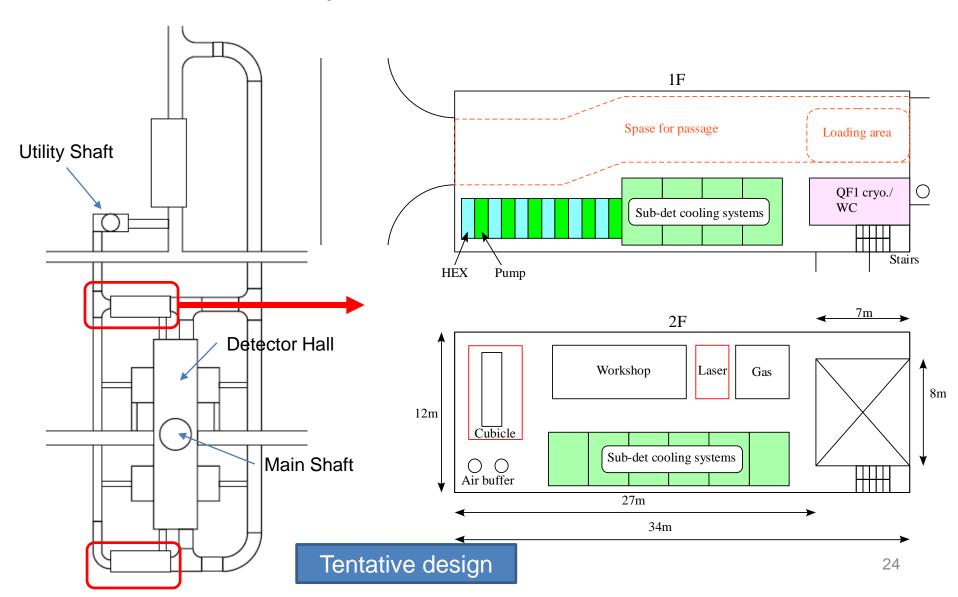

#### **OTHER SERVICES**

# Chamber gas

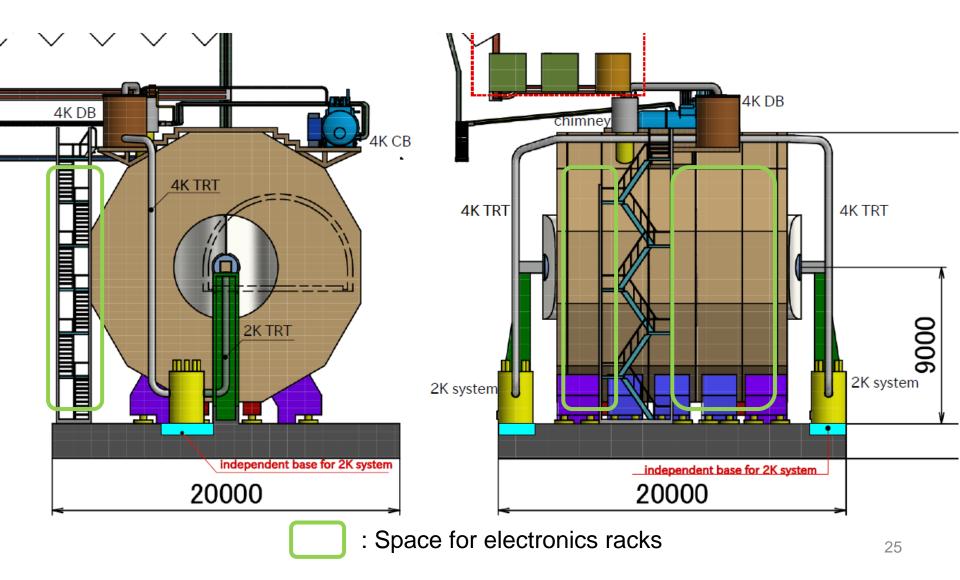
- Chamber gas is necessary for TPC and SDHCAL
- Gas storage on surface: 8x4m<sup>2</sup> for each
- Gas system underground
  - TPC: Some space on the platform
  - SDHCAL: 4x4m<sup>2</sup> space in USC and small space on service gallery and platform



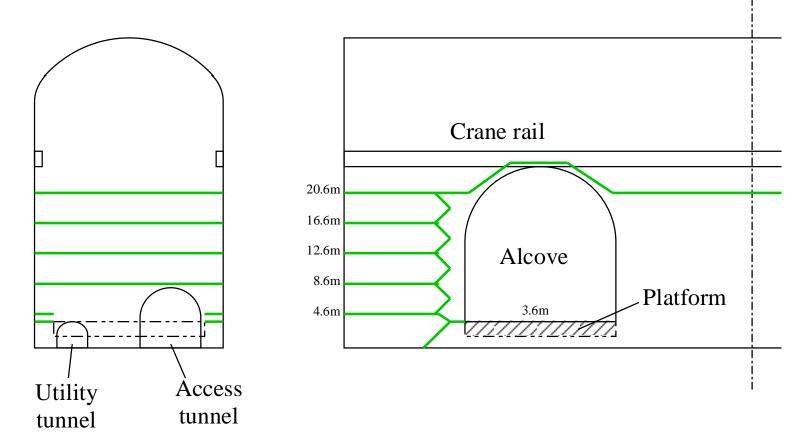

# LASER system


- Laser system will be used for tracker alignment
- Laser light source requires isolated space for safety reason

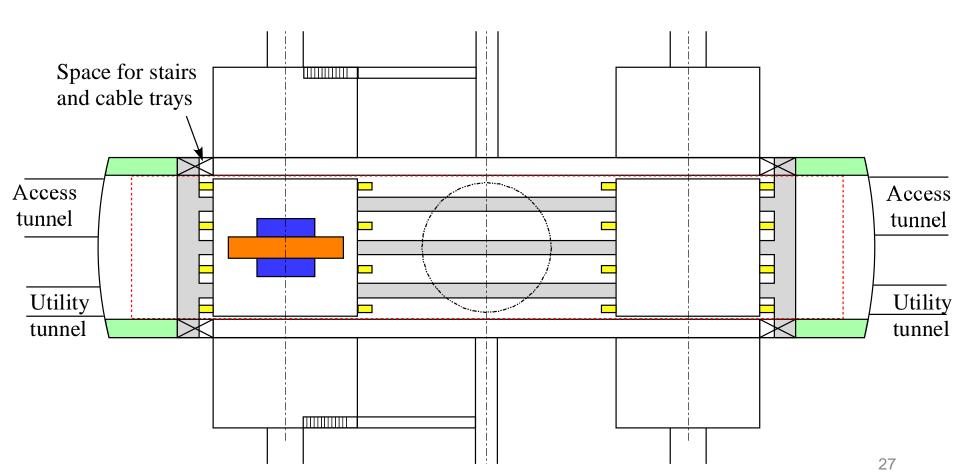
#### SPACE

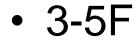

## Location of Utility/Service

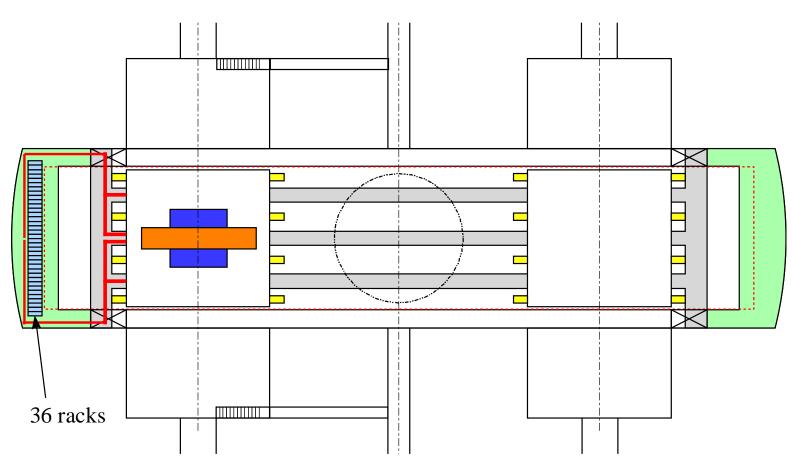



#### Utility/service cavern

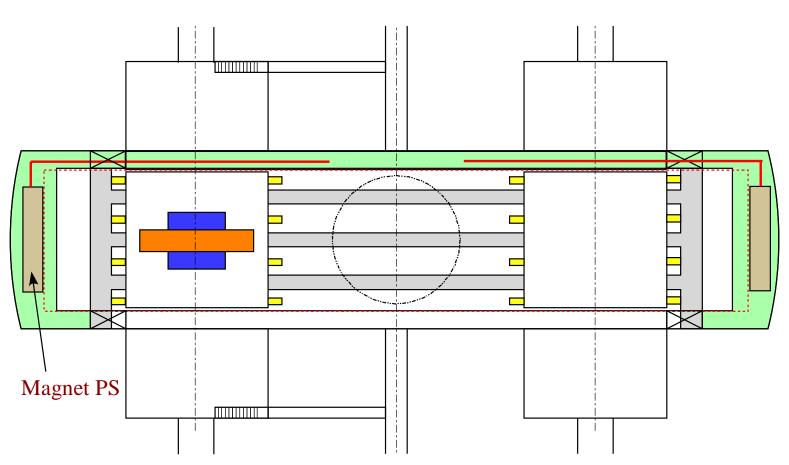



#### **Detector Platform**





- 2F is just a path to platform
- 3F-5F are used for electronics racks
- 6F is for magnet power supply
















## Space requirements

- People tends to like electronics rack space on the platform, where
  - few 100 G leakage field could exists
  - access may not be allowed during experiment
- Because space on the platform is limited, there could be severe competition between sub-detectors

| Sub-detector name |                                |     | VTX        | SIT        | FTD        | TPC         | SET        | ECAL      | SD HCAL   | A HCAL | MUON       | Lumi CAL   | BeamCAL    | LH CAL     |
|-------------------|--------------------------------|-----|------------|------------|------------|-------------|------------|-----------|-----------|--------|------------|------------|------------|------------|
| Number of 19-inch | Platform                       |     | 2 (?)      | 0          | 0          | 0           | 0          | 3         | 6         | 12     | 0          | 0 0        | 0          | 0          |
| electronics racks | Service gallery                |     | 3          | 0          | 0          | 0           | 0          | 0         | 2         | 1      | 0          | 0          | 0          | 0          |
| electronics racks | Utility/Service Cavern (USC)   |     | 0          | 0          | 0          | 4           | 0          | 0         | 0         | 0      | 0          | 0          | 0          | 0          |
| Sub-detector      | Floor in USC                   |     | Don't mind | Don't mind | Don't mind | Don't mind  | Don't mind | 1st floor | 1st floor | 0      | Don't mind | Don't mind | Don't mind | Don't mind |
| cooling system    | WxDxH                          | m^3 | 6x1x2      | 0          | 0          | 12x(0.8x0.7 | 7 0        | 4x3x2     | 4x4x2     | 0      | 0          | 0          | 0          | 0          |
|                   | Space on surface (WxD)         | m^2 | 0          | 0          | 0          | 8x4         | 0          | 0         | 8x4       | 0      | 0          | 0 0        | 0          | 0          |
| Casavatam         | Space in USC (WxD)             | m^2 | 0          | 0          | 0          | 0           | 0          | 0         | 4x4       | 0      | 0          | 0          | 0          | 0          |
| Gas system        | Space on service gallery (WxD) | m^2 | 0          | 0          | 0          | 0           | 0          | 0         | 1x1       | 0      | 0          | 0 0        | 0          | 0          |
|                   | Space on platform (WxD)        | m^2 | 0          | 0          | 0          | 2x2         | 0          | 0         | 2x1       | 0      | 0          | 0          | 0          | 0          |
| Laser system      | Space in USC (WxD)             | m^2 | 0          | 0          | 0          | 1x0.6       | 0          | 0         | 0         | 0      | 0          | 0          | 0          | 0          |
|                   |                                |     |            |            |            |             |            |           |           |        |            |            |            | -          |

## Pre-assembly hall

- In addition to the main assembly hall on surface, we need pre-assembly hall for sub-detector assembly
- Requirements from sub-detector groups were collected/estimated since 2015

| Sub-detector     | Area (m²)    | Building                                                |
|------------------|--------------|---------------------------------------------------------|
| Iron yoke blocks | 900 (=20x45) | Yoke assembly building attached to Main AH              |
| SDHCAL/AHCAL     | 1400/330     |                                                         |
| ECAL             | 830          | <ul> <li>Independent Pre-Assembly Hall at IR</li> </ul> |
| Muon detector    | 400          | <ul> <li>Total 3000/1930 m<sup>2</sup></li> </ul>       |
| TPC              | 100          | FCAL should use HCAL space after HCAL                   |
| Si detectors     | 100          | installation                                            |
| Utility          | 170          |                                                         |

# Summary

- ILD requirements for utilities have been surveyed to some extent
- For the moment, it seems power consumption of subdetectors are relatively small compared to magnet power
- Because the estimation for each sub-detector still has large uncertainty, total power consumption of sub-detectors should be describe in IDR
- Service gallery and Utility/Service cavern which we propose seem to have enough space for ILD
- Detail of space requirements is still too premature to be described in IDR
- There are still many items of requirements for detector utilities to be clarified to fix the CFS design in interaction region