

How to build the ILD TPC?

INTEGRATION MEETING DESY, Feb.11,2019

From design to reality

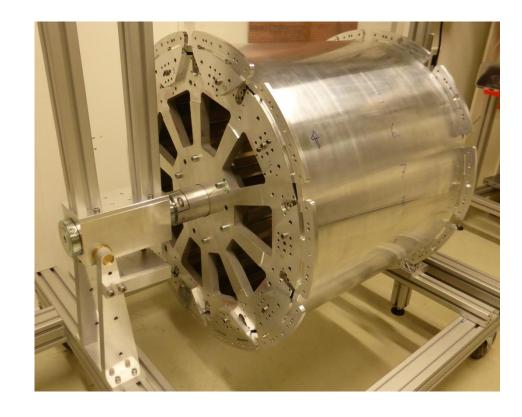
P. COLAS, A. SUGIYAMA

OVERVIEW

Gravitational loads

- Self-weight of structure: 895 kg
- Weight of the modules: 1176 kg (84 modules / endplate and 7 kg / modules)
- → Total weight of 2 000 kg

Overpressure of 3 mbar

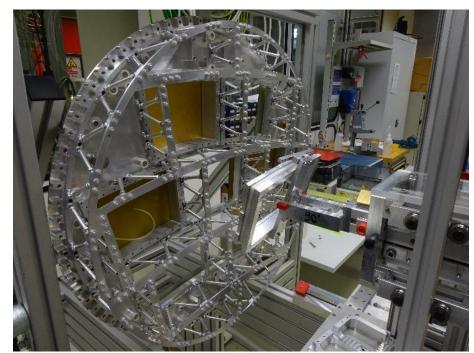

- · Pressure applied on the cages
- Forces applied on each endplate by taking into account the pressure on modules

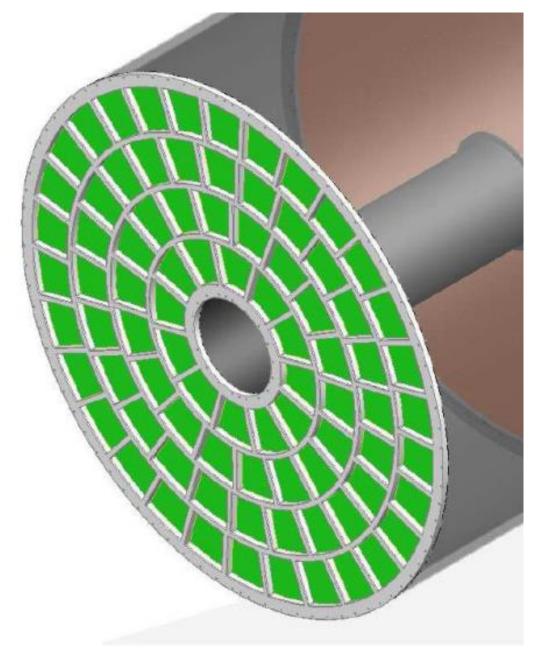
N.B.: what is called modules here (400x400 mm²) can be seen as supermodules consisting of 4 smaller modules

FIELD CAGE

Requires a mandrel to shape the composite material Kapton with copper strips
Installation of flanges

A construction on site looks preferable to a remote construction followed by a travel. Requires space in the surface.


ENDPLATES


One piece, mold? Space frame?

Which material? Stainless steel?

Aluminum+carbon fibre? (O(50 μ) accuracy) of the module positionning

Need to fill windows by dummy modules to keep the stiffness and exchange them one by one in the grey room after assembly.

MODULES

Modules include frame, PCB, amplification system, Front-end electronics (FECs and concentrator), cooling.

3 cables (HV, LV, Signal) and one pipe per module.

They must be shipped after full testing and re-tested after reception at Kitakami.

A special tool is necessary to mount them

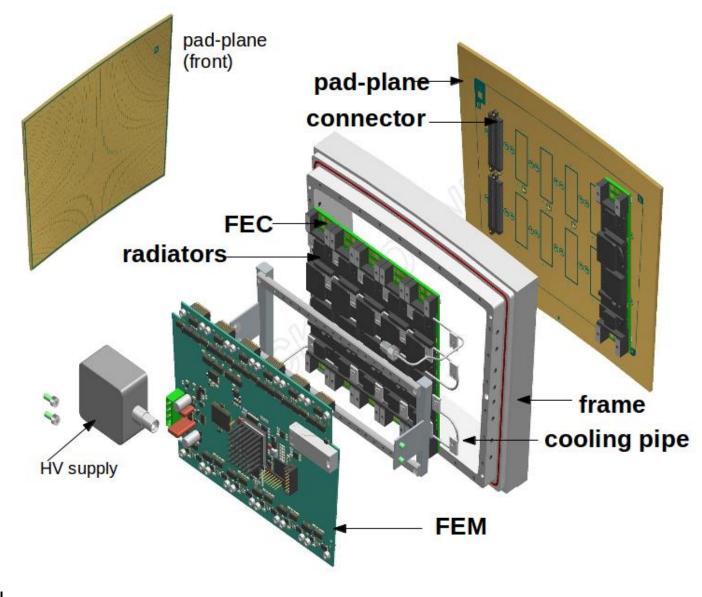
Example of a price estimate for a T2K upgrade module (Rui de Oliveira)

File preparation cost: 800 CHF 1800 CHF Tooling:

Protection box: 500 CHF/box (to be returned after each delivery)

Price for 1 detector: 4970 CHF with +/- 10% accuracy 5370 CHF with +/- 3% accuracy

Price for 32 detectors: 3976 CHF/detector with +/- 10% accuracy

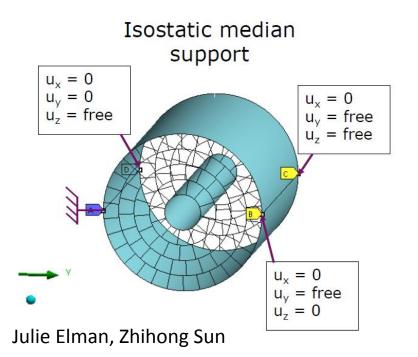

4296 CHF/detector with +/- 3% accuracy

to be defined Connector assembly:

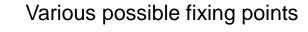
Delivery: approximately 4 to 5 detectors every 6 weeks after order reception CERN is the producer of these parts.

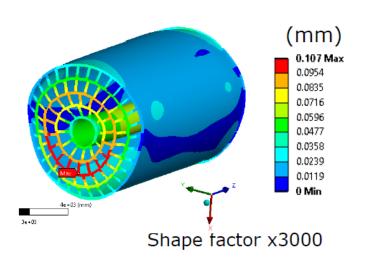
Price don't include VAT.

ALICE GEM modules being assembled at CERN

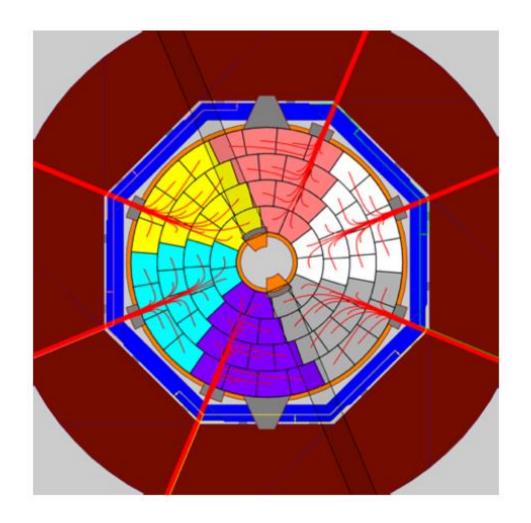



SUPPORT


To the cryostat or to the HCAL?


Best for deformations: isostatic median support to the HCAL (shorter 'ribbons')

Damping to be studied.





INTERFACES

Very High Voltage for the central cathode: Very big cable (insulation), curvature radii 70mm to 280mm. Or make it onsite (needs space also)

Low-voltage power: bundles of 10 copper cables 6 mm² section (32 A).

6 sectors per end-plate: 120 cables, 12kW(100 W per cable).

With 20 m cables (R=0.06 Ω) 60 W loss.

Can we accept this such a loss (60% of the useful power?)

Need cable cooling? DC-DC converters?

Detector HV and fibres for readout less demanding

Patch panels on each sector to allow disconnecting the TPC

Do we need a jacket against heat from the ECAL?

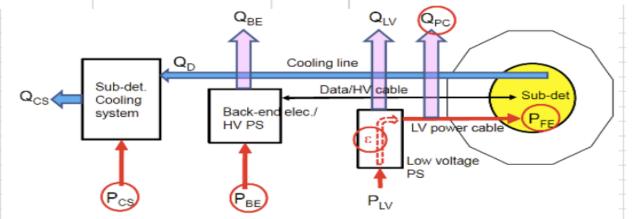
CONVENTIONAL FACILITY REQUIREMENTS

Detector hall topview **Utility Space Platform** ~20-30 m Service Gallery + 50 m U/S Cavern + 30 m Surface +100 m Magnet PS Surface He/Air compressors HVAC Gas storage PC farm (?) Cooling tower/chiller Utility/Service Cavern , Chamber gas, al fibers, Air ducts Service gallery AC transformer Electronics racks Main Shaft Heat exchangers/pumps for Magnet power supply elevator cooling water Sub-det. Cooling systems Optical fibers LASER/Gas system **Platform** QF1 cryogenics Electricity, cooling water, Utility Shaft Low-voltage power supply Workshop 훈 WC Cryogenics for magnet

CONVENTIONAL FACILITY REQUIREMENTS

Sub-detector name		TPC		T
Number of 19-inch	Platform			for LV supply
electronics racks	Service gallery	1		for HV(+VHV) supply
electronics racks	Utility/Service Cavern (USC)	4		
Sub-detector cooling	Floor in USC	Don't mind		
system	WxDxH	12x(0.8x0.7x1.5)	m^3	
	Space on surface (WxD)	8x4	m^2	Big tank
Gas system	Space in USC (WxD)		m^2	
Gas system	Space on service gallery (WxD	2)	m^2	gas circulation
	Space on platform (WxD)	2x2	m^2	purification/removal 02,H20
Laser system	Space in USC (WxD)	1x0.6	m^2	gain monitor
Other requirements				
	Laser system has to be placed safety reason.	I in an isolated room in USC for		

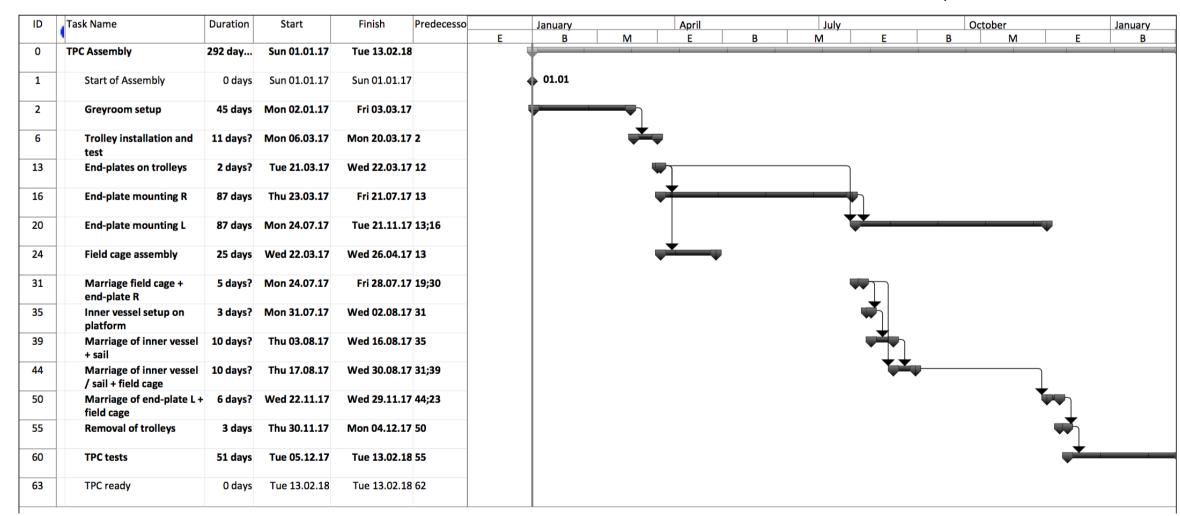
Do we need any other space?


monitor(temperature, ,) controll, interlock,,, somewhere near detector

CONVENTIONAL FACILITY REQUIREMENTS

	Sub-detector name	TPC	I
P_FE	Power consumption of Front-end Electronics	12	kW
Q_PC	Heat loss in Power Cables		kW
е	Efficiency of low voltage power supply	80%	
P_BE	AC Power input to Back-end Electronics		kW
P_CS	Electric power to drive Cooling System	1.2	kW
	Type of cooling water for cooling system	Normal temperature	
P_LV	AC Power input to Low Voltage power supply	15	kW
Q_LV	Heat loss in Low Voltage power supply	3	kW
Q_BE	Heat loss in Back-end Electronics	0	kW
Q_CS	Heat to be extracted from cooling system	13.2	kW

Assumption 1.5M channel/EP PConsumption 4mW/ch => 12 kW


HV Power consumption ~5W from LP1 extrapolat

- PFE: Power consumption of sub-detector Front-end Electronics
- Q_D: Heat loss in sub-det. (= P_{FE})
- Qpc: Heat loss in power cables
- PLV : AC power input to LV PS
- ε: Efficiency of LV PS (P_{LV}*ε= P_{FE} +Q_{PC}) Q_{LV}: Heat loss in the LV PS (=(1-ε)*P_{LV})
- PBE: AC power input to back-end elec./HV power supply
- Q_{BE}: Heat loss in the BE/HV PS (=P_{BE}) P_{CS}: Electric power to drive the cooling system
 - Q_{CS} : Heat to be extracted from cooling system (= $Q_D + P_{CS}$) How to build the TPC?

ASSEMBLY

V. Prahl, Th. Schörner-Sadenius

Is one year enough? How much manpower needed?