
Optimisation of the AHCAL Structure

2nd Update

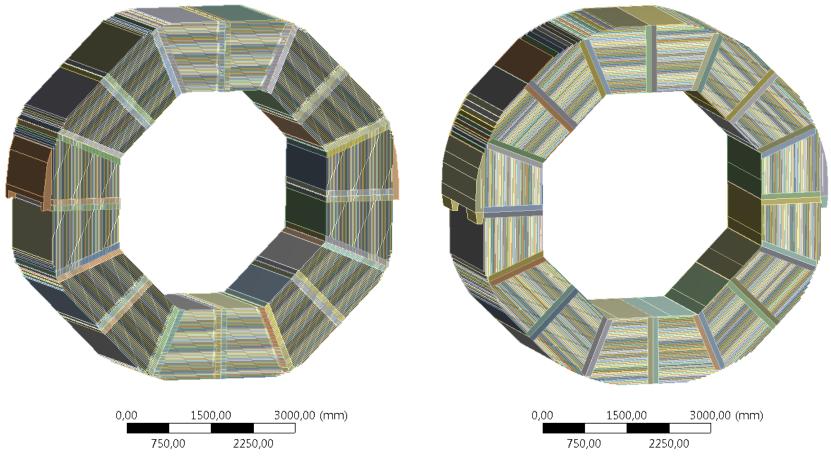
Karsten Gadow, Felix Sefkow, Martin Lemke ILD Integration Meeting Hamburg, 2019-02-11

Outline

> Reminder:

- Developed method for numerical simulation of response of complex and detailed structure to earthquake excitations
- ECAL requested reduction of static and dynamic deformations in order to maintain tight gaps between modules
- Study weak points, reinforce and optimise AHCAL structure
- Begin with update of structure dimensions
- Seometry Comparision old and new Geometry
- Lock back on the last optimisation study
- The new AHCAL Geometry in Detail
- > 2nd Study on the reinforcements of the AHCAL
- Characterisation of the favourite geometry setup with static and simplified dynamic loads
- Summary and next steps

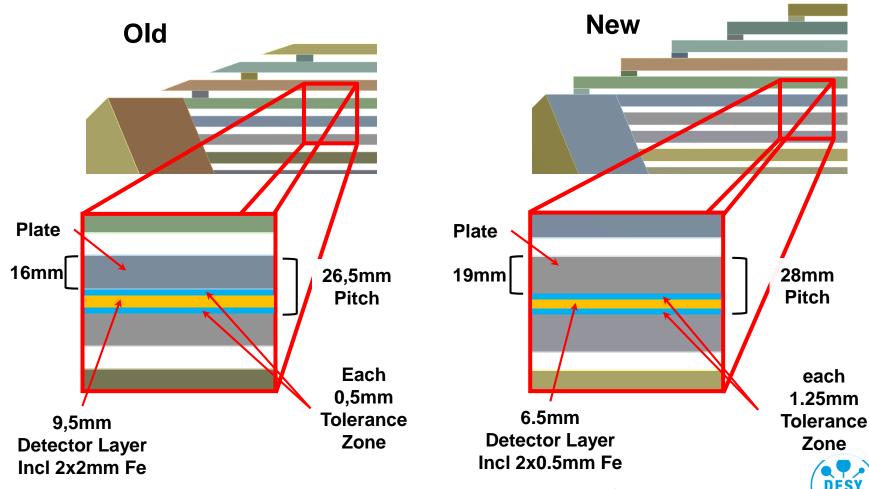
Geometry – Comparision old and new Geometry


	Old	Old		New	
Plate Thickness	16mm	16mm		19mm	
Number of Plates	=> 46 "full" lay	49 Layers with: => 46 "full" layers => 3 "reduced" layers		44 Layers with: => 37 "full" layers => 7 "reduced" layers	
Periodicity/Pitch	Every 26,5mm	Every 26,5mm		Every 28,0mm	
AHCAL Mass (total)*	262.108kg	262.108kg		291.953kg	
AHCAL Length	2.160mm	2.160mm		2.350mm	
AHCAL Outer Radius	3.392,5mm	1.445mm	3.349mm	1.291mm	
AHCAL Inner Radius	1.947,5mm	1.44511111	2.058mm	1.2911111	
Connection of AHCAL Segments	``	Coverplates: - 200mm (width) - 15mm (thickness)		Coverplates: - 200mm (width) - 15mm (thickness) Backplates: - 10mm (thickness)	

* Detector mass about 16,82kg/m² (corresponds to thin cassettes) included and ECAL mass not included

Geometry – Comparision old and new Geometry

Left, old geometry - right, new geometry



Geometry – Comparision old and new Geometry

Definition Periodicity / Pitch in Detail

+ 3mm in absorber-- 3 mm i cassette+ 1.5 mm tolerance

K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure - 2nd Update | 2019-02-11 | Page 5

Geometry – Summary old vs. new Geometry

- Small changes in the inner and outer diameter (see slide #3)
- Reduction of the space for the AHCAL-Detector about 154mm (due to new values for the inner and outer radius)
- Increase the plate thickness from 16mm to 19mm
- Change screw size from M10 to M12 (Coverplates)
- Therefore an reduction of the total number of plates per segment (see slide #3)
- Increase of the total depth from 2.160mm to 2.350mm
- Introduction of additional spacer in the inner and outer areas of the AHCAL Ring
 - => more overall stiffness and better flow of forces in the structure near the ECAL-Loads and the Support-Forces/-Moments

Lock back – Optimisation cycles on the new geometry

- To identify the optimal layout for the AHCAL-Geometry, we did some > studies of various concepts
- 10 different setups were created and compared:

Slide #09.

Tsukuba.

2018-11-29

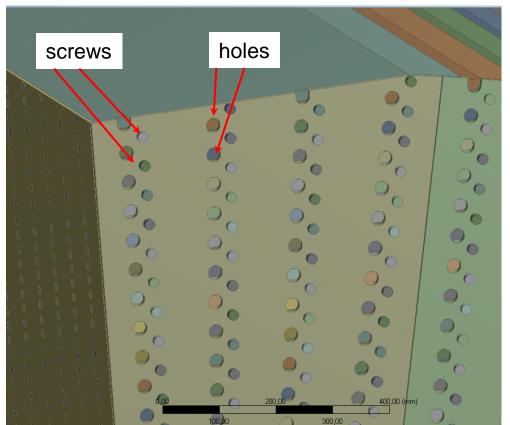
Following Geometric Modells are tested (with all detector loads) Mini-Workshop on 1. Shell, without any Spacer, Coverplates (t=15mm, w=200mm) at front and back side ILD Infrastructure, 2. Shell, Spacer, Coverplates (t=15mm, w=200mm) at front and back side Shell, Spacer, Backplates (t=10mm) and Coverplates (t=15mm, w=200mm) at front 3. 4. As 2., Coverplate thickness doubled (t=30mm, w=200mm) 5. As 2., Coverplates width doubled (t=15mm, w=400mm) As 5, Coverplate thickness doubled (t=30mm, w=400mm) 6. 7. As 2., small Coverplates (t=15mm, w=200mm) and wider Coverplates (t=15mm, w=400mm) 8. As 2., less Spacer, all Spacer across 6 layer, ECAL-Geometry 9. As 8. all Spacer across 6 layer, ECAL-Geometry 10. As 9. and 3., Spacer (as 9.) and Backplates (as 3.) > Questions: Max. deformation and max. stresses (Mises) under own weight First three Eigenmodes to estimate the dynamic behaviour

Lock back – Static and Modal Results

	Max. Deform.	Max. Equ. Stress*	1. Mode	2. Mode	3. Mode
1. Case	3,70mm**	350MPa	2,91Hz	5,19Hz	7,67Hz
2. Case	3,33mm	310MPa	3,06Hz	5,25Hz	8,14Hz
3. Case	2,00mm	440MPa	5,70Hz	9,53Hz	10,44Hz
4. Case	3,10mm	300MPa	3,16Hz	5,42Hz	8,40Hz
5. Case	2,60mm	245MPa	3,60Hz	6,15Hz	9,52Hz
6. Case	2,34mm	234MPa	3,80Hz	6,48Hz	10,00Hz
7. Case	3,10mm	260MPa	3,24Hz	5,54Hz	8,56Hz
8. Case	3,64mm	225MPa	2,91Hz	5,17Hz	7,71Hz
9. Case	2,74mm	270MPa	3,31Hz	5,81Hz	8,90Hz
10. Case	1,57mm	210MPa	6,32Hz	11,0Hz	10,44Hz

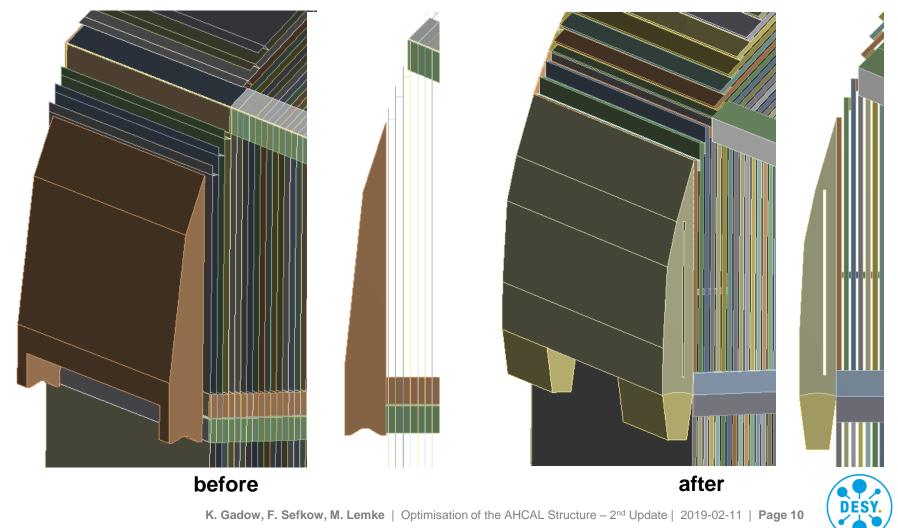
*only usefull stress values (no singularities due to boundary conditions etc.)

**due to the geometry, the ECAL-Mass deforms the first plate to much, this is the value for the coverplates on top

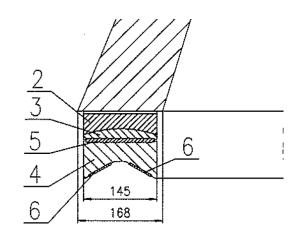


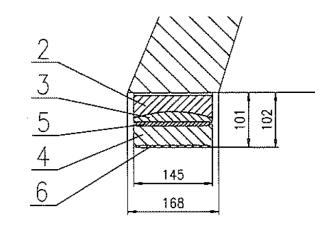
K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure – 2nd Update | 2019-02-11 | Page 8

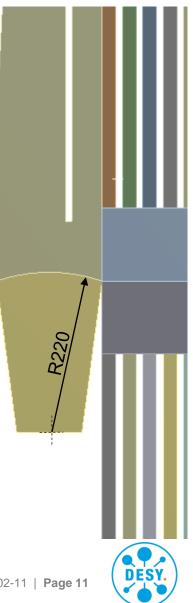
The new AHCAL Geometry in Detail – Backplate Design

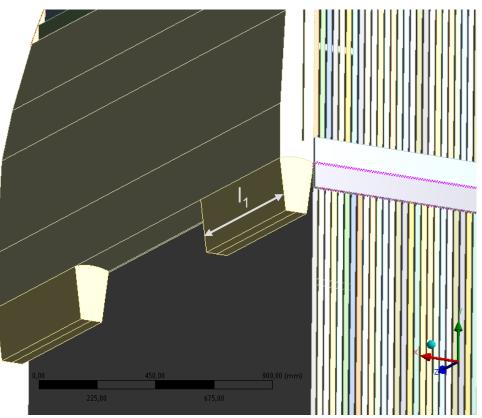

"Special Design" of the backplates:

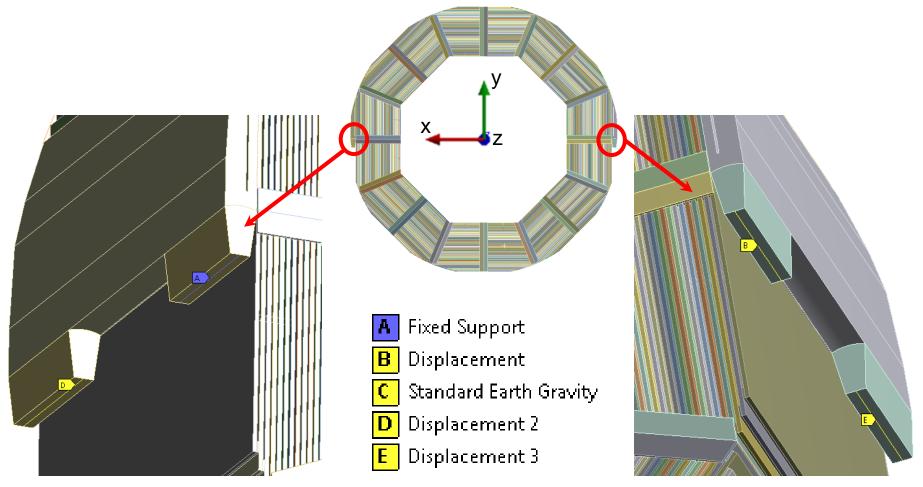
- Two AHCAL-Rings should be mounted next to each other as near as possible
- The screw heads of both AHCAL-Rings have gaps/recesses in the opposite backplate
- Therefore screws of the backplates have an offset in their arrangement





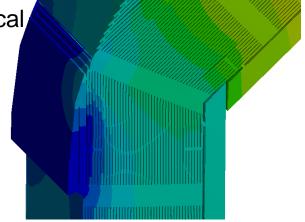

Change Support geometry to enable the mounting of detector units within the support structure, the height in the additional layer is about 720mm

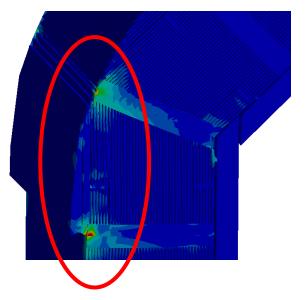

- > Adapt the real support conditions to the FE-Model
- Fixed Support-Side
 - 2 => Curved steel plate
 - 3 => CFK-Support pad
 - 4 => steel prisma (linear guidance)
 - 6 => Slide plate
- Floating Support-Side
 - 2 => Curved steel plate
 - 3 => CFK-Support pad
 - 4 => steel plate (horizontal floating)
 - 6 => Slide plate



- The supports rest on curved CFK-plates and allows the support to rotate arround a radius about R = 220mm
- In the FE-Model a spare geometry is included to define the line of rotation for the boundary condition
- The lenght/depth of these spare geometry is calculated by the following parameters:
 - Max. stress in CFK 100N/mm²
 - Safety factor (max. stress): 6x
 - Force due to the detector weight is about 1.614,63e3kN (per support side half the weight)
 - Max. amplitude in dynamic case is twice the gravitational accel.
 - = > Necessary lenght l₁ is 656mm

Support boundary condition in the FE-Model




2nd Study on the reinforcements of the AHCAL – Critical Areas

Total deformation on left, near the support some critical areas => right top corner: deformation,
 => right bottom corner: stresses (Mises)

Structural reinforcements needed ...

K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure - 2nd Update | 2019-02-11 | Page 14

677,57

184,62

169,23

153,85

138,46

123,08

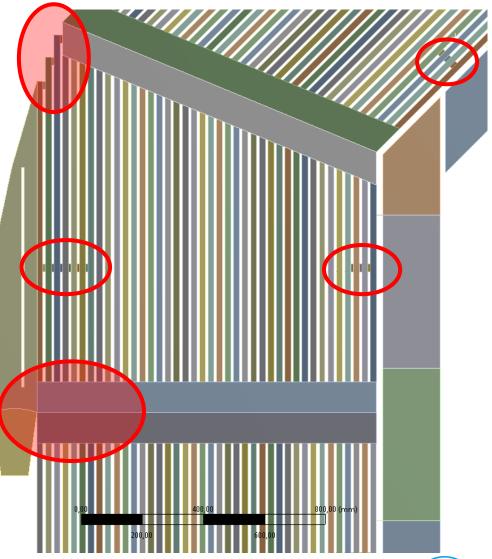
107.69

92,308

76,924

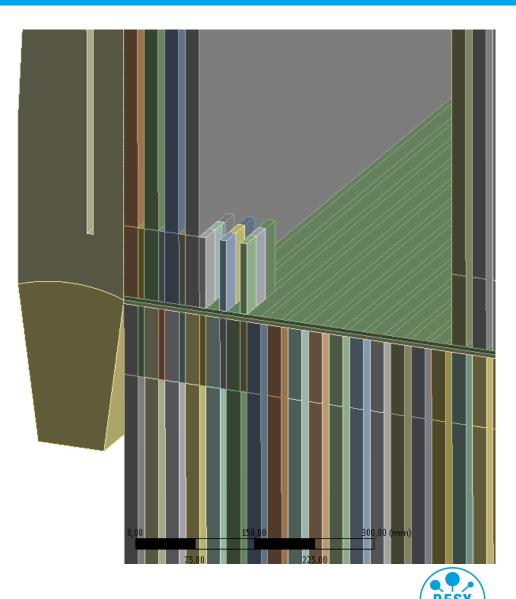
61,539

46,155

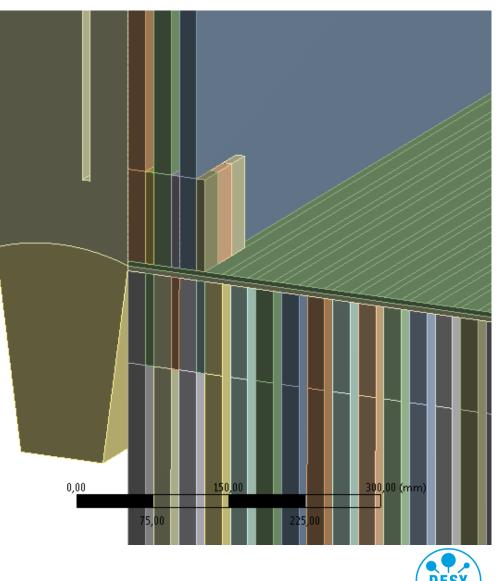

30,77

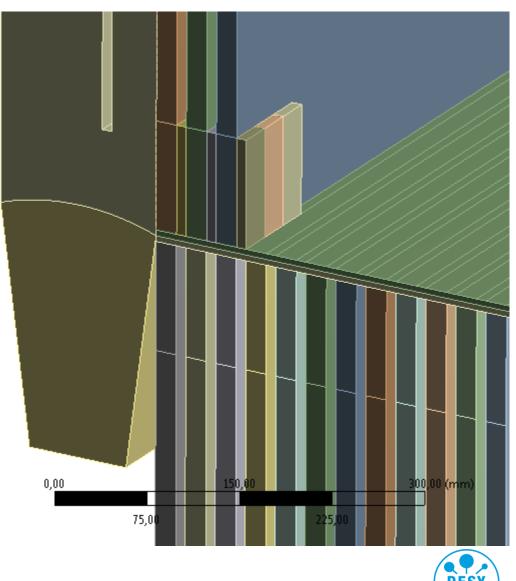
15,386

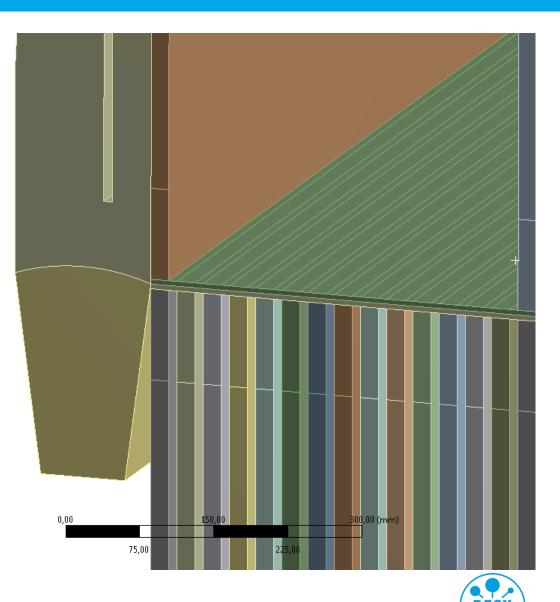
0.0014

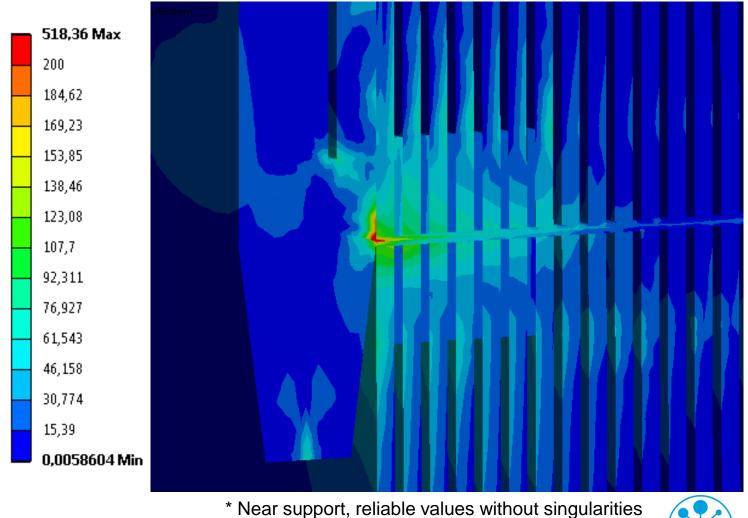

200

- > High forces and moments in the near of the supports
- Connection between support and first plate
- In the last study additional spacer introduced
- Critical areas near the support and on top plates (ledges) needs more reinforcements
- Load through gravitational effects (vertical, 1g)

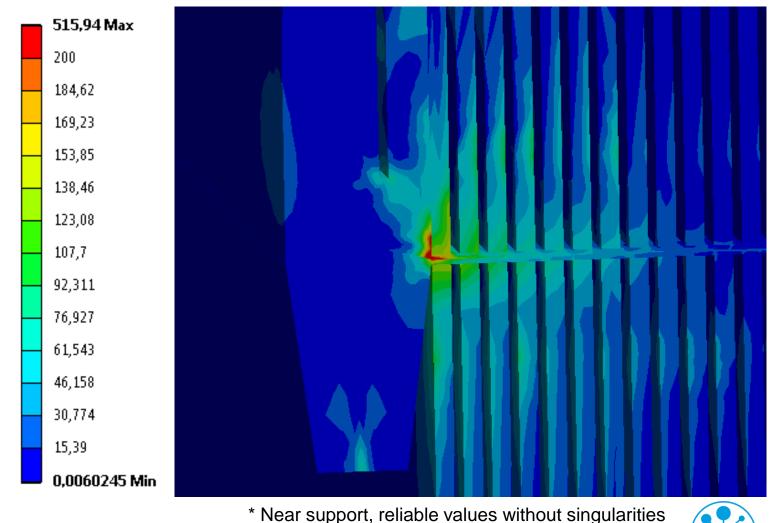


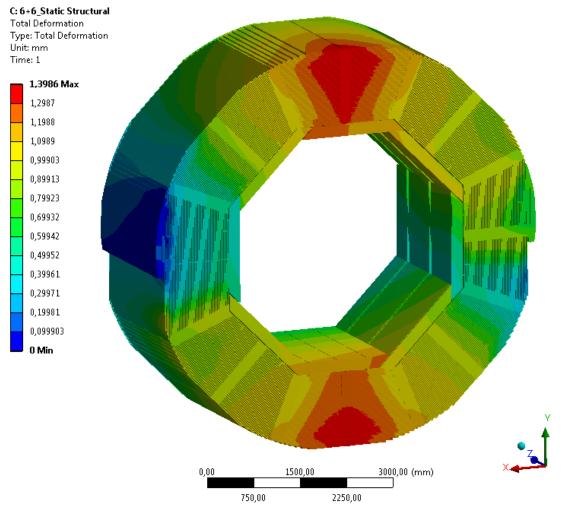

- Blocks, each 90 depth and 95mm height introduced
- > Four variants investigated:
 - 1. 6 + 6 Blocks
 - 2. 3 + 3 Blocks
 - 3. 3 + 0 Blocks
 - 4. 0 + 0 Blocks


- Blocks, each 90 depth and 95mm height introduced
- > Four variants investigated:
 - 1. 6 + 6 Blocks
 - 2. 3 + 3 Blocks
 - 3. 3 + 0 Blocks
 - 4. 0 + 0 Blocks


- Blocks, each 90 depth and 95mm height introduced
- > Four variants investigated:
 - 1. 6 + 6 Blocks
 - 2. 3 + 3 Blocks
 - 3. 3 + 0 Blocks
 - 4. 0 + 0 Blocks

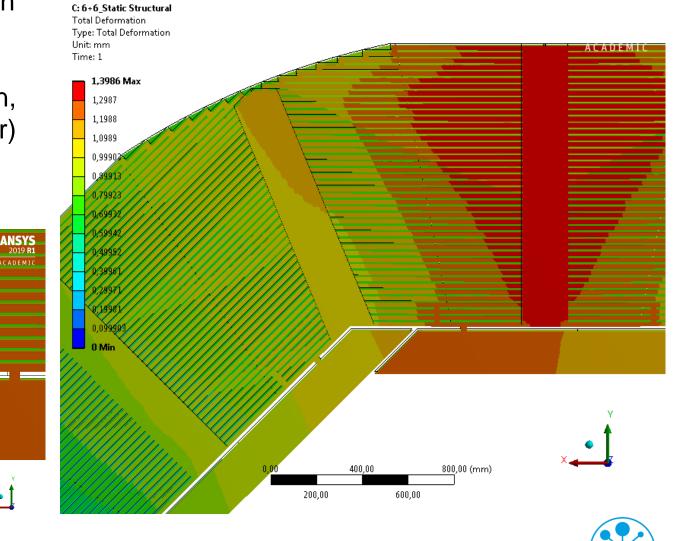
- Blocks, each 90 depth and 95mm height introduced
- > Four variants investigated:
 - 1. 6 + 6 Blocks
 - 2. 3 + 3 Blocks
 - 3. 3 + 0 Blocks
 - 4. 0 + 0 Blocks


Reduction of max. Mises-Stresses with more Blocks: 6 + 6 Blocks


K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure – 2nd Update | 2019-02-11 | Page 20

Reduction of max. Mises-Stresses with more Blocks: 0 + 0 Blocks

Total deformation of the 6 + 6 case (1,40mm)



 Total deformation detail on ECAL (undeformed wireframe shown, 10x Scale Factor)

50 OC

150.00

DESY

- Reduction of Stress, better load distribution into the AHCAL-Structure
- Small impact on deformation respectively the Eigenmodes, no really differences observed
- Further analyses with additional loads in all three directions to estimate the dynamic behaviour
- > Choosen case: 6 + 6 (best stress distribution near the supports)

	Max. Deform.	Max. Equ. Stress*	1. Mode	2. Mode	3. Mode
6 + 6	1,40mm	105MPa	5,52Hz	11,27Hz	11,44Hz
3 + 3	1,40mm	110MPa	5,52Hz	11,27Hz	11,43Hz
3 + 0	1,41mm	125MPa	5,51Hz	11,26Hz	11,42Hz
0 + 0	1,42mm	135MPa	5,51Hz	11,25Hz	11,40Hz

* Near support, reliable values without singularities

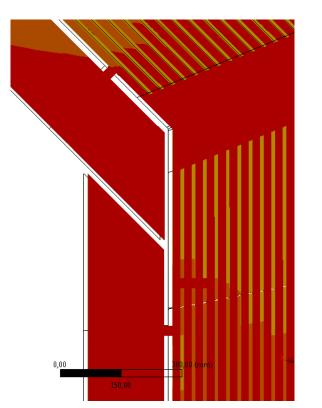
Estimate the dynamical behaviour

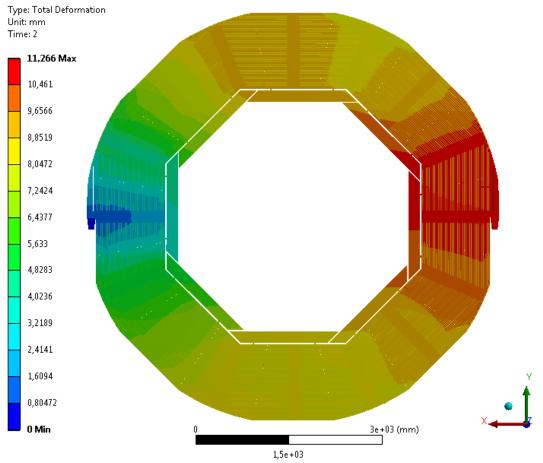
- > Additional load cases of the 6 + 6 case
 - 1. 2x 9,81 m/sec² in vertical direction (y-axis)
 - 2. 1x 9,81 m/sec² vertical and 1x 9,81 m/sec² in positive horizontal direction (x-axis)
 - 3. 1x 9,81 m/sec² vertical and 1x 9,81 m/sec² in negative horizontal direction (x-axis)
 - 4. 1x 9,81 m/sec² vertical and 1x 9,81 m/sec² in positive longitudinal direction (z-axis)
 - 5. 1x 9,81 m/sec² vertical and 1x 9,81 m/sec² in negative longitudinal direction (z-axis)
- The acceleration values are conservative compared to the earthquake load

Deformation under earthquake-like loads

> Additional load cases to estimate the dynamical behaviour of the 6 + 6 case:

- 1. 2x 9,81 m/sec² in vertical direction (y-axis)
- 2. 1x 9,81 m/sec² vertical and 1x 9,81 m/sec² in positive horizontal direction (x-axis)
- 3. 1x 9,81 m/sec² vertical and 1x 9,81 m/sec² in negative horizontal direction (x-axis)
- 4. 1x 9,81 m/sec² vertical and 1x 9,81 m/sec² in positive longitudinal direction (z-axis)
- 5. 1x 9,81 m/sec² vertical and 1x 9,81 m/sec² in negative longitudinal direction (z-axis)


Load Case	Max. Deform.	Max. Equ. Stress*	Deform. x-Direction	Deform. y-Direction	Deform. z-Direction
0	1,39mm	180N/mm²	0,96mm	1,25mm	0,62mm
1	2,77mm	410N/mm ²	1,93mm	2,50mm	1,23mm
2	11,26mm	250N/mm ²	11,26mm	5,14mm	1,79mm
3	10,22mm	160N/mm²	10,21mm	3,87mm	2,43mm
4	3,85mm	260N/mm ²	3,63mm	2,72mm	2,87mm
5	4,20mm	160N/mm²	2,81mm	2,81mm	3,37mm



Worst case

> Total deformation from 2. load case (1g vertical, 1g pos. x-direction)

- > 11,27mm (scale value 1x)
- > No collision detected!

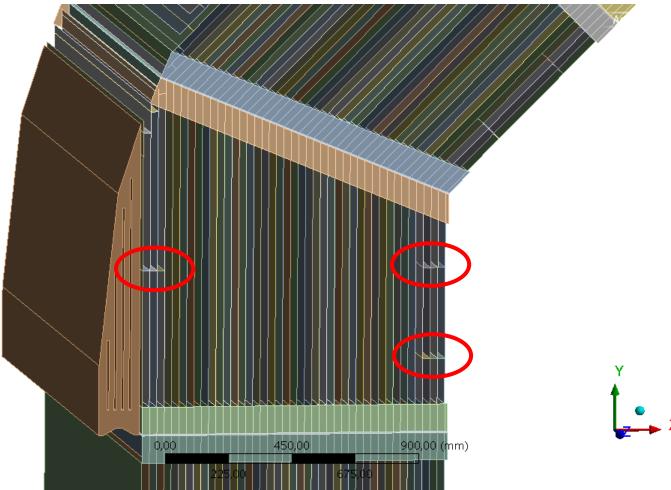
Summary

- > Reinforcements in critical points to optimise rigidity
- Optimisation of spacer layout in respect of the placement of the detector modules for the AHCAL
- Backplates at centre of barrel (z=0) cover full end face and improve rigidity considerably
- > One active layer with 720mm height in support
- Residual static displacements could be compensated by adjusting fixture for ECAL rails after survey
- Maximal displacement now below 2 mm
- Compare: CMS barrel HCAL 2-3 %

Next Steps

- Switch to CMS method and check for dynamic stability under realistic earthquake excitation
- Re-inforce potential critical points in dynamical behaviour
- Detailed studies on connecting elements (Coverplates, Backplates, Ledges, etc.) and screws of the AHCAL-Structure
- Common optimisation with ECAL Group

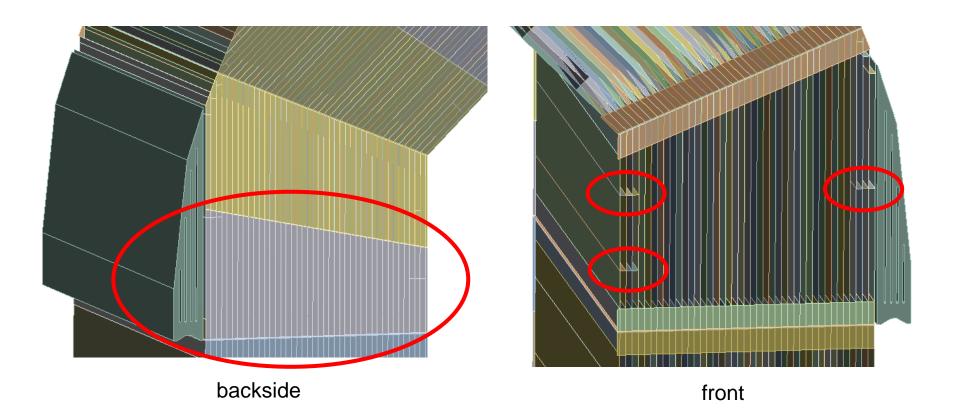
Thank you for your attention. Any questions?



Backup Slides

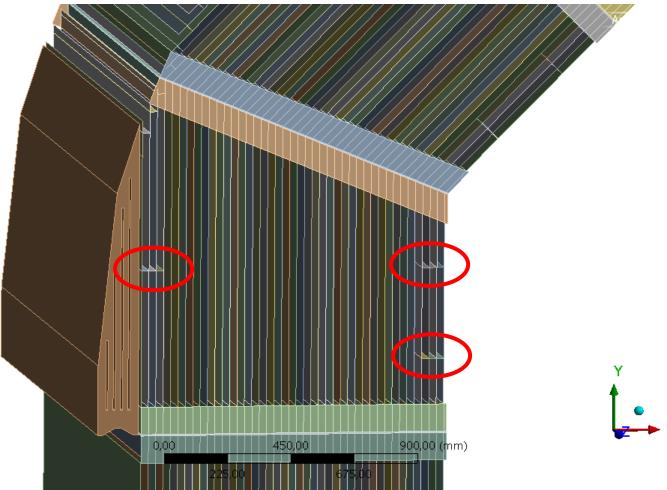
Case 2 – Geometry

> As Case 1, with Spacer on inner and outer radius (across three layer)

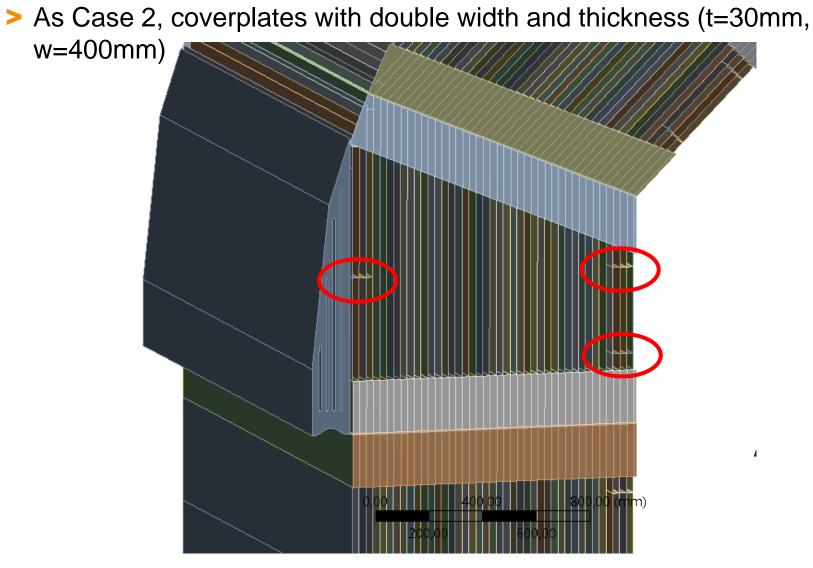


K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure - 2nd Update | 2019-02-11 | Page 32

Case 3 – Geometry

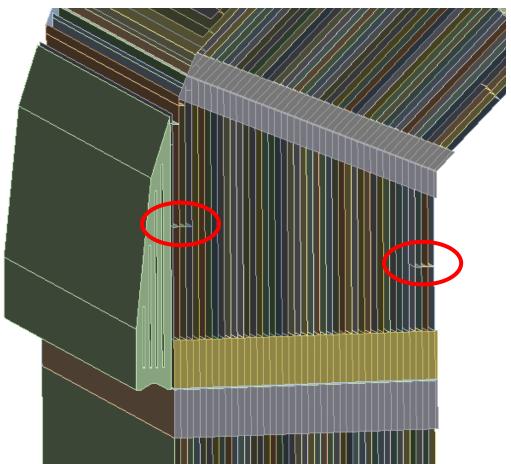

> As Case 2, Back: Large plate (10mm thickness), assymmetric

Case 4 – Geometry


> As Case 2, coverplates with double thickness (t=30mm, w=200mm)

K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure - 2nd Update | 2019-02-11 | Page 34

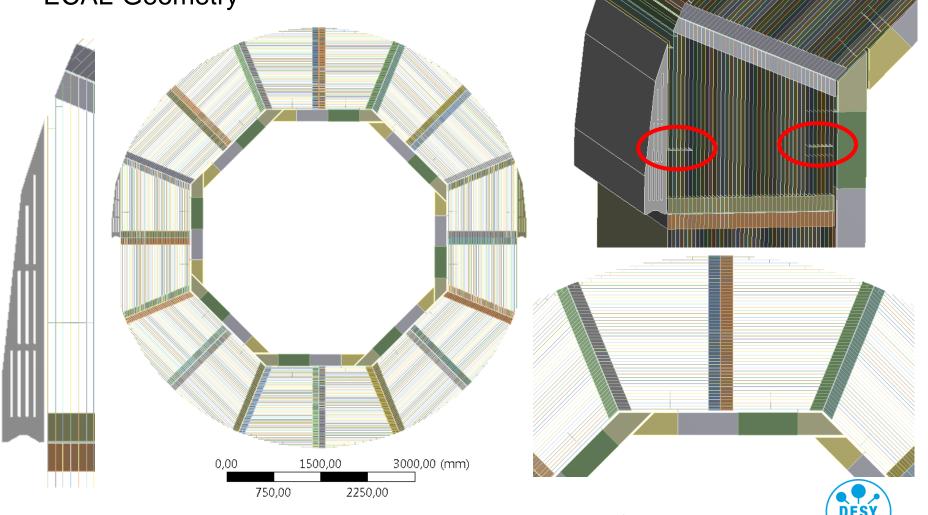
Case 6 – Geometry



K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure – 2nd Update | 2019-02-11 | Page 35

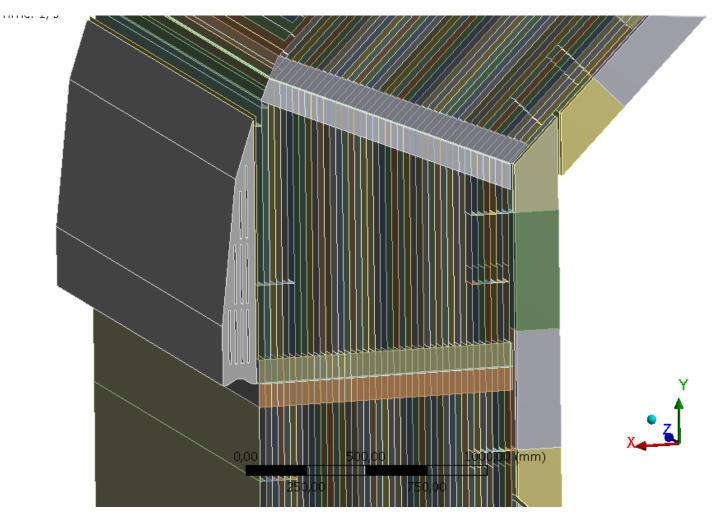
Case 7 – Geometry

Less Spacer, small Coverplates (t=15mm, w=200mm) and wider Coverplates (t=15mm, w=400mm)



K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure – 2nd Update | 2019-02-11 | Page 36

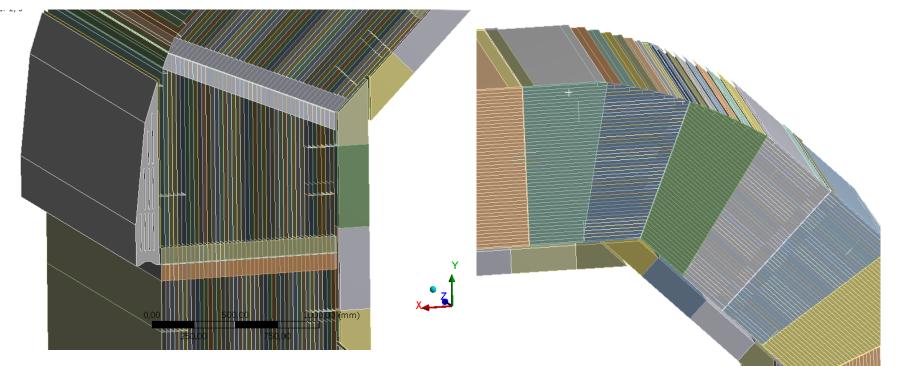
Case 8 – Geometry


> As 2., less Spacer, all Spacer across 6 layer, re-inforced support, ECAL-Geometry

K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure – 2nd Update | 2019-02-11 | Page 37

Case 9 – Geometry

> As 8., all Spacer across 6 layer, ECAL-Geometry



K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure – 2nd Update | 2019-02-11 | Page 38

Case 10 – Geometry

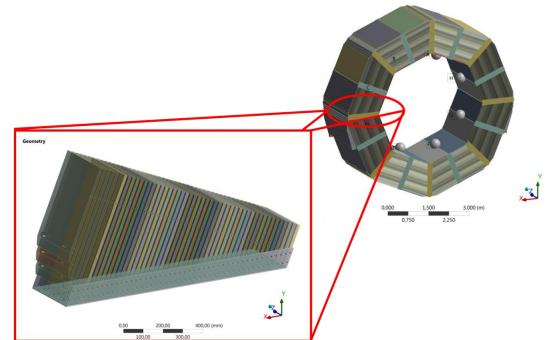
- > As 9. and Backplates (t=10mm, same in case 3.)
- Left:Coverplates, Support and ECAL
- Right: Backplates (connecting to segments, splitted/sliced due to needed FE-Model structure for Substructuring and ECAL

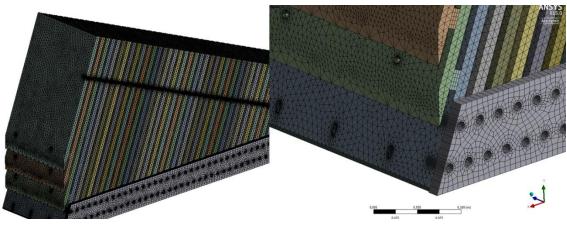
CMS HCAL

K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure – 2nd Update | 2019-02-11 | Page 40

CMS HCAL

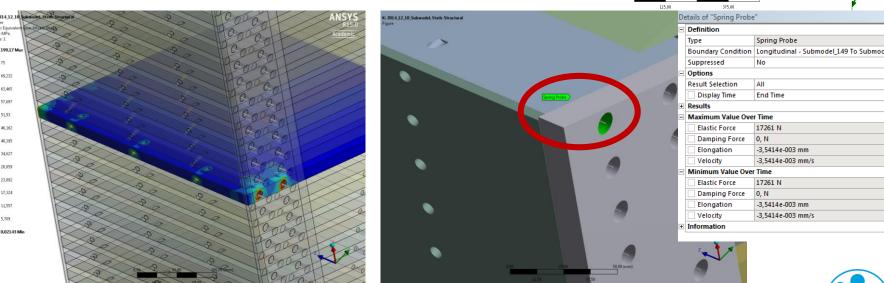
K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure – 2nd Update | 2019-02-11 | Page 41


How to get the Stress in single screws of AHCAL-Segments? – The general Plan and Submodeling


- Simplification of FE-Models reduces the accuracy of local stress phenomena => Submodeling-Method
- Here: global/full AHCAL FE-Models uses Shell-Elements to reduce the overall problem size
- With the help of the Submodeling Method the total displacements on the full FE-Model ca be tranfered to the detailed 3D FE-Model
- In the cases the Substructuring Method (and their special Superelements with Master Nodes on the boundary faces) for our dynamic analyses will be used, the FE-Models are set up in that way to allow the usage of the Submodeling Method every time

How to get the Stress in single screws of AHCAL-Segments? – The general Plan and Submodeling

- > The principle:
 - Built-up a global FE-Model (geometry, boundaries, loads) with special cut-boundaries included
 - do the rough calculation of deformation information and
 - export these deformation information from the cut boundary to an external file

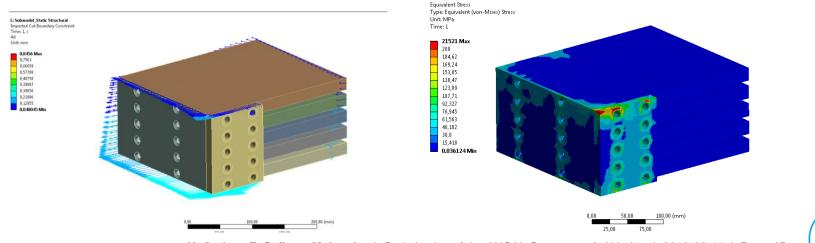

- Valid for all analyses types
- E.g.: the detailed FE-Model with a fine mesh and about 6,4e6 Nodes



K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure - 2nd Update | 2019-02-11 | Page 43

How to get the Stress in single screws of AHCAL-Segments? -- The general Plan and Submodeling

- Built-up a detailed FE-Model inside the cut boundaries (in the same location with regard to global coordinates) and mapping of deformation information onto these cut boundaries
- After a succesful solution/solve, e.g. mechanical working loads on single screws can be investigated



DES

K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure – 2nd Update | 2019-02-11 | Page 44

Case 10 – Stresses in a 3D Submodel

- Screws modeled as spring elements with preload about 30kN, crosssectional area and stiffness in N/mm according to M12 specific data
- Contacts between the coverplate and the segment plates defined as a frictional contact:
 - Friction coefficient about 0,15 (steel to steel, dry without lubrication)
 - A non-linear contact with the possibility to lift off
 => important to investigate wether the preload is sufficient to clamp all plates tight to each other without sliding effects/lift off
- Example of 3D Submodel (left imported displacements, right Stresses)

K. Gadow, F. Sefkow, M. Lemke | Optimisation of the AHCAL Structure – 2nd Update | 2019-02-11 | Page 45