Encapsulated Resistive-anode Micromegas TPC

Results of beam test
@ DESY 13/Nov ~ 28/Nov

LCTPC. 10/Jan. 2018
D. Attié, P. Colas, X. Coppolani, S. Emery-schrenk,
S. Ganjour, T. Ogawa, H. Qi, M. Riallot,
B. Tuchming, J. Timmermans, M. Titov, and thanks to R. Diener, O. Schäfer, V. Prahl ...

Outline

1. Motivation and detector
2. Experiment condition, gas, detector, H.V.
3. Uniformity on charge spread, hit charge
4. Distortions
5. $\sigma r \varphi, \sigma z$
6. $\mathrm{dE} / \mathrm{dx}$ resolutions

Encapsulated Resistive-anode Micromegas

- Resistive-anode Micromegas

Performance requirement for ILC : ~ $\mathbf{1 0 0} \boldsymbol{\mu} \mathbf{m}$ spatial resolution
"T2K" gas gives small transverse diffusion because of CF4 which can make τ large (make e stay in Ramsauer dip)
 under B $\sim 4 \mathrm{~T}, \mathrm{Dt} \sim 30 \mathrm{um} / \sqrt{ } \mathrm{cm}$ (limit by pad size \sim width $/ \sqrt{ } 12$)

Need sufficient \#pads to evaluate barycenter
\Rightarrow spread charge and share with several pads.

- Encapsulated Resistive-anode Micromegas

Mesh is connected to ground (Nobody did it).
Encapsulation shields against external noise small signal can be acquired

Module-Module boundary keep homogeneity of \mathbf{E} field ,
 reduce $\mathbf{E x B}=>$ Mitigates track distortions

Detector configuration

- Module $\left\{\begin{array}{l}\text { Module size: } 22 \mathrm{~cm} \times 17 \mathrm{~cm} \\ 24 \text { rows } \times 72 \mathrm{columns}(\mathbf{1 7 2 6} \text { Pads) } \\ \text { Pad size: } 3 \mathrm{~mm} \times 7 \mathrm{~mm}\end{array}\right.$

- AFTER chip produced by Saclay httos//deierg/0.1097/Ts 2008924067 for various kinds of detectors and gas mixtures
- Different electronics gain
- $25 \mathrm{MHz}(50,100 \mathrm{MHz})$ sampling frequency
- Peaking time 100 ns to 600 ns
- Resistive anode for dispersing charge

Diamond Like Carbon-coated kapton
Surface $\mathrm{R}=2.5 \mathrm{Mohm} / \mathrm{sq}$ is optimal when considering pad size, insulator thickness, and shaping time ...
=> sufficient charge spreading \& protection for sparks

Conditions of the experiment gas, modules, and so on

- 4 modules are installed
- 2PCO2 cooling with TRACI

TRACI=Transportable Refrigeration Apparatus for Co2 Investigation

Very stable operation during beam test. Keep the modules $28 \sim 30^{\circ} \mathrm{C}$

Conditions of the experiment

- Gas condition was good
system temperature $\left[{ }^{\circ} \mathrm{C}\right]$

date in Nov.
system H2O [ppm] system O2 [ppm]

date in Nov.

$$
\mathrm{H} 2 \mathrm{O} \sim 150 \sim 100 \mathrm{ppm}
$$

date in Nov.

O2~60 ppm

Conditions of the experiment

- Drift velocities (time estimator: gaussian inflection)

21 Nov. 2018 B=1T, Vanode=380V

- Meas.
$140 \mathrm{~V} / \mathrm{cm}: V=57.0 \pm 0.1 \mathrm{~mm} / \mu \mathrm{s}$
$230 \mathrm{~V} / \mathrm{cm}: V=75.0 \pm 0.1 \mathrm{~mm} / \mu \mathrm{s}$
Magboltz
T2K $\left\{\begin{array}{l}\mathbf{1 6}^{\circ} \mathbf{C}, \mathbf{1 0 1 5} \mathbf{~ h P a} \\ \mathbf{H 2 O :} \mathbf{1 5 0} \mathbf{~ p p m} \\ \mathbf{O 2 : ~ 6 0 ~ p p m ~}\end{array}\left\{\begin{array}{c}140 \mathrm{~V} / \mathrm{cm}: \mathbf{V}=\mathbf{5 7 . 2} \pm 5^{*} 10^{-3} \%, \\ \mathrm{Dl}=308.4 \pm 1 \%, \mathrm{Dt}=75.7 \pm 1 \% \\ 230 \mathrm{~V} / \mathrm{cm}: \mathbf{V}=75.2 \pm 3^{*} 10^{-3} \%, \\ \mathrm{Dl}=230.0 \pm 1 \% \quad \mathrm{Dt}=94.0 \pm 1 \%\end{array}\right.\right.$

24 Nov. 2018 B=1T, Vanode=370V

- Meas.
$140 \mathrm{~V} / \mathrm{cm}: \mathrm{V}=57.9 \pm 0.1 \mathrm{~mm} / \mu \mathrm{s}$
$230 \mathrm{~V} / \mathrm{cm}: \mathrm{V}=75.9 \pm 0.1 \mathrm{~mm} / \mu \mathrm{s}$

$$
\text { - Magboltz }\left\{\begin{array} { l }
{ \mathbf { 1 6 } { } ^ { \circ } \mathbf { C } , \mathbf { 1 0 2 0 } \mathbf { ~ h P a } } \\
{ \text { H2O: 100 ppm } } \\
{ \text { O2: 60 ppm } }
\end{array} \left\{\begin{array}{c}
140 \mathrm{~V} / \mathrm{cm}: \mathrm{V}=57.7 \pm 3^{*} 10^{-3} \% \\
\mathrm{Dl}=308.3 \pm 1 \%, \mathrm{Dt}=74.9 \pm 1 \% \\
230 \mathrm{~V} / \mathrm{cm}: \mathrm{V}=75.5 \pm 4 * 10^{-3} \% \\
\mathrm{Dl}=230.0 \pm 1 \% \quad \mathrm{Dt}=93.6 \pm 1 \%
\end{array}\right.\right.
$$

Average of 24 rows

Condition of the modules

- $\mathbf{\sim 9 . 9 \%}$ channels are active

Accumulation of cosmics

- Less noise contribution

Pedestal-RMS dist. measured under $\mathrm{B}=1 \mathrm{~T}$

Dynamic range of ADC is 12 bit

Condition of pulse finding

- Typical raw pulses

- Hit efficiency $=\frac{\# \text { of actual Hit }}{\# \text { of expected Hit }}$

efficiency $>\mathbf{9 9 \%}$

Condition H.V and gain drop

- Optimization of H.V.
- $\sigma r \phi$ as a function of anode voltage (amplification) ($\sigma \mathrm{r} \phi$: width of a $\Delta=x_{\text {track }}-x_{\text {hit }}$ distribution)

[^0]No gain drop during the operation (at least 50 physics runs $\sim 500 \mathrm{~min}$.) anode voltage $=370 \mathrm{~V}, \#$ ofTracks >0

No absorption of seed electrons

Uniformities in $\mathbf{r} \varphi$ for charge spread, resolution

Uniformity of charge spread (center)

https://indico.cern.ch/event/698927/contributions/2872364/

- Pad responce function
$\rho(\mathrm{r}, \mathrm{t})=\frac{\mathrm{RC}}{2 \mathrm{t}} \exp \left[-\frac{-\mathrm{r}^{2} \mathrm{RC}}{4 \mathrm{t}}\right] \quad \square$ Gaussian spreading as a
R- surface resistivity
C- capacitance/unit area
sqrt(2t/RC)
$\sigma=1.4 \mathrm{~mm}$ is suited for 3 mm -width to share amplified charge with a few pads Expectation : for $\mathbf{R}=\mathbf{2 . 5} \mathbf{M o h m} / \mathbf{s q}$, shaping 200ns,
$200+50 \mu \mathrm{~m}$ kapton, σ will be $\sim 1.4 \mathrm{~mm}$

Uniformity of Hit charge $\& \operatorname{\sigma r} \varphi$ (center)

Map showing an associated HIT charge

over the center module

Map showing orф

over the center module

Looks that the center part has large charge because of geometrical effect (deformation around the center)

No clear variation gain variation $\sim 30 \%$ (1300 vs 1000)

Geometry scan (old module)

Still under study

Uniformity of Hit charge \& $\sigma r \varphi$ (3modules)

- Charge spread for 3-module

\#of clusters/pulses in Hit object (each row is normalized
to all 1track-event)

center: \#of 3 pulses ~ 10%
\#of 2 pulses ~ 0\%
the over all behavior is consistent with the spread

Track distortions

$B=0,1 T$

=> 150119 D.S.Bhattacharya AperoSPP
potential map [V]

Track distortions $B=0 T$

(After bias corrections (local RC properties))
track distortion in $\mathbf{r} \phi$

- Essential distortion

Ed= $230 \mathrm{~V} / \mathrm{cm}$
Data selection :
\{ \#of tracks=1,
No saturated pulse

$$
\Delta x=H i t-\operatorname{track}
$$

Good improvement

for over the (center) module

Distortion between
module \& field cage
must be investigated electrode is tilted

track distortion in \mathbf{Z}

\uparrow Hight of the detector
is not uniform ...
Need to do alignment study...

$\uparrow \Delta z$ has the structure

 electric force line is distorted
Track distortions $B=1 \mathrm{~T}$

- Including ExB
$\mathbf{E d}=230 \mathrm{~V} / \mathrm{cm}$
Data selection :
\{ \#of tracks=1, \{ No saturated pulse

$$
\Delta=\text { Hit - track }
$$

In 2015, $\mathrm{z}=100 \mathrm{~mm}$ has already big distortions.

Huge improvement (10 times)
between the module boundary
track distortion in $\mathbf{r} \phi$

Track distortions $B=1 \mathrm{~T}$

- Different (flexibility) H.V. configuration
Ed= $230 \mathrm{~V} / \mathrm{cm}$
Data selection :
$\left\{\begin{array}{l}\text { \#of tracks=1, } \\ \text { No saturated pulse }\end{array}\right.$

Anode (lower\&upper) $=\mathbf{3 8 0 V}$
Anode (center) = 390, 380, 360, 340 0 V
No distortion in r \mathbf{r}, but \mathbf{Z} has something

$\mathrm{r} \varphi \& \mathrm{z}$ resolutions over the 3modules

- Magnetic field 1T with Ed=230V/cm

Diffusion is dominant for longer drifts and or ϕ is uniform
or ϕ is not uniform for shorter drifts due to \#of clustered -> charge spread

Row dependence on or ϕ

Row dependence on σz

$\mathbf{r} \varphi \mathcal{\&} \mathbf{z}$ resolutions

- Magnetic field 1T with $\mathbf{E d = 2 3 0 V} / \mathrm{cm}$

Data selection :
 \{ \#of tracks=1,
 \#of saturated pulses=0

3-module fit :
including the most inn/outer rows, in total 72 rows

$$
\begin{aligned}
& \boldsymbol{\sigma}_{\mathbf{r} \phi}\left\{\begin{array}{l}
\sigma 0 \sim 97 \mathrm{um} \\
\mathrm{Neff} \sim 34(5 \mathrm{GeV}) \sim 24(\mathrm{MIP}) \\
\mathrm{Dt} \sim 27 \mathrm{um} / \sqrt{ } \mathrm{cm}(\mathrm{~B} \sim 3.5 \mathrm{~T})
\end{array}\right. \\
& \boldsymbol{\sigma}_{\mathrm{r} \phi} \sim \mathbf{1 2 0 [\mu \mathrm { m }] (\text { full drift } 2 . 2 \mathrm { m } @ 3 . 5 \mathrm { T })}
\end{aligned}
$$

$\boldsymbol{\sigma}_{\mathbf{Z}}\left\{\begin{array}{l}\sigma 0 \sim 260 \mathrm{um} \\ \mathrm{Neff} \sim 29(5 \mathrm{GeV}) \sim 20(\mathrm{MIP}) \\ \mathrm{Dt} \sim 230 \mathrm{um} / \sqrt{\mathrm{cm}}(\mathrm{B} \sim 3.5 \mathrm{~T})\end{array}\right.$
$\sigma_{\mathrm{Z}} \sim 0.8[\mathrm{~mm}]$ (full drift $2.2 \mathrm{~m} @ 3.5 \mathrm{~T}$)

$\mathbf{r} \varphi \& \mathrm{z}$ resolutions (2018MM and 2015MM)

CEA/Irfu, Apero, D S
Bhattacharya, 19th June 2015

3 module fit
o0 ~ 290, Neff ~ 31

r φ (φ dependence)

Rotating LP1,

$\sigma_{r \varphi}(z, \alpha) \approx \sqrt{\sigma_{r \rho}^{2}(z)+\frac{L^{2}}{12 \widehat{N}_{\text {eff }}} \tan ^{2} \alpha} . \quad$ (DESY paper)

Rotation was done by hands,
Z was not took care
Remove several run data
the effective number of clusters
~ 4.3

I could not find the value in DESY paper.

Summary

- The detectors were almost perfectly working in 2018BT
- Small non-uniformity was observed for the charge distribution. (study geometry)
- No 2pulses-Hit in short drift (center module)
- Huge improvement is observed for the track distortions.
- Detector alignment studies are must
- Control electrodes of the field cage to match with surface of the MM
- r ϕ \& z resolutions reach to requirements of ILD-TPC

dE/dx resolution

$\mathrm{dE} / \mathrm{dx}$ resolution

- Charge correlation between rows
- Pad size: width $\mathbf{3 ~ m m} \times$ height 7 mm

Row by row charge correlation
make resolution worse
(due to large deposit from δ-ray and diffusion)
charge correlation Qrow : Qrow+1
$\begin{array}{ll}\mathrm{B}=0 \mathrm{~T}, \text { correlation factors are } & \mathrm{Z}=50 \text { aveCorr }=0.341 \\ \delta \text {-ray and diffusion cover the rows } & \mathrm{Z}=300 \text { aveCorr }=0.459 \\ \mathrm{Z}=550 \text { aveCorr }=0.545 \\ & \\ \mathrm{~B}=1 \mathrm{~T}, & \mathrm{Z}=100 \text { aveCor }=0.136 \\ \text { small correlation } \ldots & \mathrm{Z}=300 \text { aveCor }=0.151 \\ & \mathrm{Z}=550 \text { aveCorr }=0.155\end{array}$
$B=0 T, \quad$ Drift length $\sim 500 \mathrm{~mm}$

dE/dx resolution

- Truncated Mean method

The most robust estimator
Ed= $230 \mathrm{~V} / \mathrm{cm}$
Data selection :
\{\#of tracks=1, ~ 2000 events available

- $\mathbf{2}$ data set (drift $\mathbf{3 0} \sim \mathbf{3 0 0} \mathbf{~ m m}$ are merged)

Look the center module.

- Injection point difference ((1) \& (2) region)
- charge spread is a bit different
- track angles are slightly different $\left\{\begin{array}{lll}(1) & \mathbf{3} \text { degrees (center module) } \\ (2) & 0 \text { degrees (center module) }\end{array}\right.$

According to Asian-GEM study,
$\phi=0^{\circ}$ and 20° give the same performance $4.7 \pm 0.02 \%$ (220 sampling)

$\mathrm{dE} / \mathrm{dx}$ resolution

- Truncated Mean method

The most robust estimator
Ed $=230 \mathrm{~V} / \mathrm{cm}$
Data selection :
\{ \#of tracks=1, ~ 2000 events available

- 2 data set (drift $\mathbf{3 0} \sim \mathbf{3 0 0} \mathbf{~ m m}$ are merged)

Look the center module.

- Injection point difference ((1) \& (2) region)
- charge spread is a bit different
- track angles are slightly different

Look the center module.

Fraction
(2) 0 degrees (center module)

$$
\left\{\begin{array}{lr}
\text { • (1) } 5.2 \% \pm 0.2 \% & \text { stat error is large... } \\
\cdot \text { (2) } 4.8 \% \pm 0.2 \% & \text { charge spread ? }
\end{array}\right.
$$

dE/dx resolution

- Truncated Mean method

The most robust estimator
Ed= $230 \mathrm{~V} / \mathrm{cm}$
Data selection :
\{ \#of tracks=1,

- $\mathbf{2}$ data set (drift $\mathbf{3 0} \sim \mathbf{3 0 0} \mathbf{~ m m}$ are merged)

Perform 3-module fitting:

- Injection point difference ((1) \& (2) region)
- charge spread is a bit different

- track angles are slightly different

$$
\left\{\begin{array}{l}
\text { (1) }-3 \text { degrees } \text { (center module) } \\
\text { (2) } 0 \text { degrees } \text { (center module) }
\end{array}\right.
$$

Fraction

$$
\left\{\begin{array}{l}
\cdot(1) 5.2 \% \pm \mathbf{0 . 1 \%} \\
\cdot(2) 5.0 \% \pm 0.1 \%
\end{array}\right.
$$

stat error is large... charge spread?

$\mathrm{dE} / \mathrm{dx}$ resolution: understanding using Simulation

- Heed + Garfield++

Track heed 5 GeV electron : 110 electrons / cm

Drift distance 100 mm
AvalancheMicroscopic (under T2K gas)

Gas amplification : Polya function

$$
<\text { gain }>=1000, \mathrm{f}=0.7
$$

- pad-height is set to $7 \mathbf{m m}$

$\mathrm{B}=0 \mathrm{~T}$, correlation factors is
Z= 100 aveCorre $=0.33$, similar with data
$\mathrm{B}=1 \mathrm{~T}$, correlation factors is
Z= 100 aveCorre $=0.12$, similar with data

$\mathrm{dE} / \mathrm{dx}$ resolution: understanding using Simulation

- Magnetic field 1 T with $\mathbf{E d = 2 3 0 V} / \mathbf{c m}$ 24 pad rows with 7 mm pad-height are set \#of sampling is 170

Black: simulation $\boldsymbol{\sim} \mathbf{4 . 3 \%}$
Blue : Data (right reagion) $\boldsymbol{\sim} \mathbf{4 . 8 \%}$ \#of tracks = 1

Red : Data (right reagion) $\mathbf{\sim 4 . 5 \%}$ $\left\{\begin{array}{l}\text { \#of tracks }=1 \\ \text { Exclude hits including saturated pulses }\end{array}\right.$

- If charge is properly collected without saturation, data will reach minimum of simulation

- Behavior for small fraction is still unclear what main sources are...

Summary

- $\mathrm{dE} / \mathrm{dx}$ resolution with 3-module fit reaches to $\sim 5 \%$
- The variation depending on the position is observed
- Results between the data and the simulation has still unknown

Nice events

Geometry scan (old module)

Event 15
Event 14

double trigger:
1st trigger(event) was not acquired because of "busy flag" 2nd trigger(event) was acquired when tail (spread) still existed.

Anyway it's not pile up problem A problem on the electronic, maybe but, it is still under discussion...

[^0]: gas gain : reference Figure 5-2 in PhD:WANG_WENXIN (Fig 7-3 with 5GeV) .

