WW Analysis using semileptonic decay channel

Justin Anguiano

Introduction

- WW $\rightarrow qq \ l\nu$ semileptonic decay with $l = \mu, \tau$
- Initially use polarizations (e_L^-, e_R^+) (e_R^-, e_L^+)
- Using standard signal samples:

rv02-00-01.sv02-00-01.mILD_I5_o1_v02.E500-TDR_ws.I250018.P4f_ww_sl.eL.pR.n001.d_dstm_10318_0.slcio

- Running on v2-00-02
- Currently only addressing large detector

Perform Benchmark study by obtaining physics observables:

- Dynamics associated with TGC from W⁻ production angle
- \blacktriangleright m_W measured from qq jets
- Measurement of the beam polarization through WW cross section

- First Look at the rescaled energies of the 4 fermions
- Energy Partitioning is completely different for mirrored polarizations

Opening angle of the lepton and the nearest quark

- Tends to have a distinct separation between the lepton and quark jets
- Similar for both polarizations

- Sin of the polar angle of the 4 fermions
- LR the energetic fermions tend to be very forward
- RL few particles make it into the forward region

Compare multiplicities of visible neutrals/tracks for the generator lepton

- This includes FSR(s)
- Excludes showering / detector / simulation effects (like photon conversions)

 μ mostly remains a single track Sometimes a photon is radiated

 τ is dominated my hadronic decays Mostly combinations of π^{\pm},π^{0}

Begin Reproducing known results for event selection I. Marchesini DESY-THESIS 2011

Using 3 different background samples for now:

ee-> qq rv02-00-01.sv02-00-01.mILD_l5_o1_v02.E500-TDR_ws.I250114.P2f_z_h.eL.pR.n001.d_dstm_10410_0.slcio (first 3 files)

WW->qqqq rv02-00-01.sv02-00-01.mILD_l5_o1_v02.E500-TDR_ws.I250006.P4f_ww_h.eL.pR.n001.d_dstm_10398_0.slcio

ZZ->qqll rv02-00-01.sv02-00-01.mILD_l5_o1_v02.E500-TDR_ws.I250014.P4f_zz_sl.eL.pR.n001.d_dstm_10301_0.slcio

All backgrounds and signal normalized to 1 fb

Use basic variables to proceed, with event selection-Total number of tracks Total Pt Total visible E Total Mass Jet variables log(y-) log(y+)

Decay	σ	weight
qq	32470.5	1.061
qqqq	7680.69	1.067
qqll	608.57	0.054
qqlnu (signal)	9251.41	0.784

cuts: number of tracks > 10 Energy < 500 GeV

cuts: pt > 7 GeV , 80 < Mass < 500 GeV

cuts: log y- > -9.5 , -12 < log y+ <-2.9

Defining Acceptance Region

- A significant portion of the events are very forward
- We define a polar angle cut to eliminating events which have no hope of reconstructing a track

Make a safe cut for now for all 3 generator particles (lqq) Require $|\cos \theta| < 0.995$ This corresponds to the region $\theta > 5.7^{\circ}$

This reduces the total reconstructable events to- μ : 5893 \rightarrow 5255 and τ : 5907 \rightarrow 5277 Or total signal 11800 -> 11080

10/9/2018

WW Analysis

First look at efficiency with a sequential cut flow

	qq	qqll	qqqq	qqlnu
Total events	30600	11200	7200	11800
cosTheta < 0.995	27102	10176	6398	11080
nTracks > 10	26502	9892	6398	10832
Pt > 7	8098	7672	2178	10530
E < 500	5883	7430	1246	10274
80< M < 500	5748	7262	1245	10263
Log y-	5700	7238	1245	10263
Log y+	5696	7237	1244	10262
%	18.61	64.6	17.28	86.97

Adding additional Cuts

Signal track multiplicity

MCTagging----

Track Multiplicity of MCTagged Jets

Overlay

Overlay

Removal techniques

- Preprocessor
- Kt R=1.5, R=0.8 -> eekt N=3jets

Removal techniques

Overlay removal hadronic mass

TODO: Plot primary physics observables with cuts+no overlay+mctagging

• Also calculate performance metrics