Hadron Production in Photon-Photon Processes and BSM signatures with small mass differences

Sw-Ana Meeting

Swathi Sasikumar 23 Jan 2019

Benchmark Scenario

- > Light higgsinos $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ can be discovered/excluded at ILC <u>DESY-THESIS-2016-001</u>
- > The case was studied at two benchmark scenarios

$$\Delta M(\tilde{X}_{1}^{\pm}, \tilde{X}_{1}^{0}) = 770 \text{ MeV} => \text{dM}770$$

$$\Delta M(\tilde{X}_1^{\pm}, \tilde{X}_1^{0}) = 1.6 \text{ GeV} => \text{dM}1600$$

- > Charginos decay hadronically and leptonically
- > Studied without the inclusion of
 - $\gamma \gamma \rightarrow \text{low p}_T \text{ overlay}$
 - Pair background

Possible methods to remove $\gamma\gamma \rightarrow low pT$ hadrons

> First Method:

- Displacement of vertices in z direction
- Vertices of $\gamma\gamma$ overlay events displaced from that of signal vertices
- Identifying the tracks coming from such vertices and removing them would be an effective method
- This method cannot be used for purely neutral events like $\gamma \gamma \to \pi^0 \pi^0$

> Second method:

- The invariant mass of decay products of rho meson gives rho mass
- Rho meson used as a tag to remove $\gamma\gamma$ events
- Could be applied on very small event number

Reconstruction level and the track parameters

- >Standard vertex finding algorithm reconstructs one single primary vertex for each event
- >More complex algorithm to group the tracks to find different vertices
- > Grouping based on difference in z0 significance
- > Unlike the particles in $\gamma\gamma \rightarrow low$ pt hadron events, charginos have a finite life time which makes the d₀ parameter important
- >Develop a new algorithm which groups the closest tracks to form vertex positions
- > A new algorithm developed and the results were shown Benchmarking days at Arlington.
- The algorithm was initially made as a c++ root macro

Processor for Algorithm dM1600 without Pair background

- > The whole algorithm has been transported into two different processors.
- > A processor applying different cuts to the sample as per the given samples
- > The main algorithm processor grouping tracks together to form vertices
- > Comparison for both the cases are shown

Algorithm Performance for dM1600 (pair background)

The processor can give similar results as the old algorithm even though the results with old method are slightly better

Removal of high do tracks for dM770

- >For dM770 tracks with higher d₀ mostly include signal tracks
- >Among the tracks coming from two charginos one has higher d₀ other lower
- >For dM770 track with highest d₀ treated separately assuming to be one signal track

$\tilde{\chi}_1^+$ decay mode	BR(dM770)
$e\nu\widetilde{\chi}_1^0$	15.0%
$\mu u\widetilde{\chi}_1^0$	13.7%
$\pi^+\widetilde{\chi}^0_1$	60.4%
$\pi^+\pi^0\widetilde{\chi}^0_1$	7.3%
$\pi^+\pi^0\pi^0\widetilde{\chi}^0_1$	0.03%

0

10

 10^{-4}

 $d_0/\sigma_{d_0} \widetilde{\chi}^{F_1}$

-30

-30

-20

-10

Algorithm Performance for dM770

> The processor could reproduce almost similar result as before

dM770 - old method

High d0/sigma d0 tracks (No pair background)

The processor can give similar results as the old algorithm even though results with old method looks better

Algorithm Performance dM770 (with Pair Background)

High d0/sigma d0 tracks (with pair background)

Conclusion

- > A new processor developed where the old algorithm in root macro status has been transported
- > The processor gives results similar to the old method even though the results from old method are slightly better
- > Investigation on if the results can be made more better with the processor carried on
- > Next Steps:
 - Identification of different groups as signal and background
 - Reconstruction of chargino mass with removal of gamma gamma background