

Poeschl R., Richard F., <u>Bilokin S.</u> LAL, Orsay

Overview

- → Introduction
- TruthVertexFinder
- Reconstruction validation
- VertexChargeRecovery

Objective

- Main purpose of this work is to detect the charge of top and antitop quarks. This is crucial for calculation of forward-backward asymmetry A_{fb} in $t\bar{t}$ process at ILC
- Properties of decay products from the B-hadrons are used to determine the charge of initial tquark
- Charge of the b-quark is calculated as a sum of the charges of secondary and ternary vertex particles
- The charge of K-meson from ternary vertex is directly connected to the charge of t-quark

- Introduction
- **→ TruthVertexFinder**
- Reconstruction validation
- VertexChargeRecovery

Process overview

Hadronization and decay modes of b-quark:

TruthVertexFinder IO

Input

- CollectionName (string) Name of generated particles collection
- InitialQuarkPDG (int) PDG code of the seeding quark. Ex: 5
- DecayChainPDGs (vector<int>) list of the hadron types that are used to form the generated vertices. Each entry will seed a formation of a generated vertex. Ex: input of "5500 4400 0" will form a secondary vertex of b-hadrons and a ternary vertex of c-hadrons

Output

- EGProngs (MCParticle*) collection of generated prongs from all found vertices
- MCVertex (Vertex*) collection of found generated vertices

TruthVertexFinder scheme

Process overview

Hadronization of the b-quarks in the MCParticles collection:

Process overview

Hadronization of the b-quarks in the MCParticles collection:

Vertex construction

Decay scheme of the B-hadrons:

- Excited states of b- and c- hadrons can decay into a charged prong and a ground state hadron
- Decay chain refining procedure selects the last hadron of a given type instead the first one
- A recursive algorithm selects electrons, muons, pions, kaons, protons child particles for each selected hadron to form a secondary and a ternary vertex

Processor output

Secondary vertex

Ternary vertex

 Number of tracks for b and c vertices. For charge measurement the 1-prong decay is dangerous and it is present in both vertices

- Introduction
- TruthVertexFinder
- Reconstruction validation
- VertexChargeRecovery

Comparison to reconstruction

- We compare the output of TruthVertexFinder to output collections from LCFI+ JetVertexRefiner algorithm using a private processor
- Jets are tagged by the minimal angle between associated reconstructed vertex and a generated vertex
- Particles from a reconstructed vertex are compared to particles from a corresponding generated vertex
- If a generated vertex is not reconstructed it is marked as "lost"
- All results are written to ROOT TTree

Search for missed tracks

- Main purpose of this processor is to look for the particles from Bmeson that are missed in the reconstruction
- Some of the reconstructed secondary particles in LCFI+ output are copied from PandoraPFOs and do not have any RecoMCTruthLink available
- The following scheme allows us to look for a missed particles by using the truthlink:

Comparison to reconstruction

Vertex reconstruction quality check

- Introduction
- TruthVertexFinder
- Reconstruction validation
- → VertexChargeRecovery

VertexChargeRecovery IO

 Designed to have an identical output to JetVertexRefiner and FlavourTag algorithms from LCFI+

• Input:

- JetCollectionName (string) jet collection, Example: FinalJets
- JetRelCollectionName (string) jet-vertex relation collection, Example: FinalJets_rel
- SecondaryCollectionName (string) vertex collection. Example:
 FinalJets vtx
- NotUsedTracksCollectionName (string) collection of tracks that were not used to create PFOs, Example: TracksFailBothCanFormPfoFlags – for REC files
 MarlinTrkTracks – for DST files
- UseTracks (bool) flag to use non-PFO tracks or not

Output:

 Similar output LCIO collections as the input ones, RecoveredJets, RecoveredJets_rel, RecoveredJets_vtx ...

Recovery of the vertices

- For each reconstructed vertex we check if a particle from the same jet is compatible with the vertex
- New vertex object is constructed using new particles
- New LCRelation object connects the recovered vertex with corresponding jet object

• **IP** – interaction point (primary vertex), \mathbf{s} – secondary vertex, \mathbf{t} – point of closest approach of a track, \mathbf{p} – reconstructed momentum, ϵ - offset of a track from primary vertex

Recovery of the vertices

• IP – interaction point (primary vertex) , s – secondary vertex, t – point of closest approach of a track, p – reconstructed momentum, ϵ - offset of a track from primary vertex $\epsilon/\sigma=d_0/\sigma_{d_0}+z_0/\sigma_{z_0}$ 20

Track parameter uncertainties

- Angular distribution of d0 and z0 uncertainties for DBD and minivector (CellsAutomatonMV) tracking.
- The transition to the forward region is puzzling
- Minivector has a stepfunction-like uncertainty behavior

Summary

- We developed a complete software framework to study for vertex charge measurement
- Vertex charge recovery requires combination of different sources of information, including non-standard reconstruction
- May need better understanding of barrel to forward region transition
- Methods are designed to work on ttbar process at ILC
 - Can be extended to bbbar process

Thank you!

Directions in ILD

Old offset vs new offset

 Angular distribution of the recovered b-tracks and background (fake) tracks. Minivector tracking.

Components of the offset significance

Components of the offset significance.

Overall charge purity improvement

Minivector + recovery DBD+recovery

- B-meson charge purity as a function of different parameters.
- Minivector sample has ~3% larger purity

DBD top polar angle reconstruction

 Top polar angle reconstruction for DBD and DBD + new recovery for vertex charge only.

Recovery optimization

Angular distribution of the recovered b-tracks and background (fake) tracks. Covariance matrix is used. Minivector tracking.

Minivector top polar angle reconstruction

- Top polar angle reconstruction for Minivector and Minivector + new recovery. Efficiency and purity is lower than for DBD tracking
- LeptonFinder and flavour tagging are not optimized for minivector tracking

Improvement by W leptonic

- The events are selected if there is a non-contradicting B-jet charge and lepton charge from W or $\chi^2_t < 15$
- The efficiency of this method is ~10% higher than published result [arXiv:1307.8102 [hep-ex]]

 Top polar angle reconstruction for DBD using combination with lepton charge from W decay.

$$\chi_{t}^{2} = \left(\frac{m_{rec} - m_{t}}{\sigma_{m}}\right)^{2} + \left(\frac{E_{rec} - E_{beam}}{\sigma_{E}}\right)^{2} + \left(\frac{p_{rec}^{*} - p_{b}^{*}}{\sigma_{p}^{*}}\right)^{2} + \left(\frac{cos\theta_{rec} - cos\theta_{bW}}{\sigma_{cos\theta_{bW}}}\right)^{2}$$

Kaon identification

- Kaon-pion separation in dE/dx measurement taken from PIDTools for all secondary and ternary tracks
- In current analysis kaons are selected using generator information for ternary tracks with TPC hits > 60 and $|cos\theta| < 0.95$

Improvement by kaons

 Top polar angle reconstruction using kaons and vertex charge combination. Kaons are identified using generator information for TPC tracks. B-jet information only.

Research setup

- We are using 500 GeV semileptonic ttbar sample eLpR with pair background v01-16-05 (DBD)
- Same sample using CellsAutomatonMV as tracking algorithm v01-17-09 (Minivector)
- TruthVertexFinder from MarlinReco/Analysis to get the generated vertices
- Modified version of VertexChargeRecovery from MarlinReco/Analysis (Recovery)

Overall top polar angle improvement

 Top polar angle reconstruction for DBD. Veto: The DDbar events are excluded using generator information

Missed tracks and missed vertices

Angular distribution of the missed tracks from reconstructed vertices.

Number of tracks comparison Minivector

51.0% on diagonal

63.3% on diagonal

Top asymmetry: diagonal events

- TruthVertexFinder works correctly!
- To reach this quality we should maximize the vertex reconstruction quality:
 - Recover corrupted vertices
 - Reject corrupted vertices
 - Apply different tracking algorithms
 - Use alternative vertexing algorithm

95.5% precision

 The result of top asymmetry reconstruction with correctly reconstructed b vertices.

Offset deviation - Minivector reconstruction

 Majority of missed tracks have low offsets. These tracks can be recoverable if their angle w.r.t. secondary vertex is small

Top asymmetry DBD

 The result of top asymmetry reconstruction with real b charge measurement. DBD tracking, no recovery

Top asymmetry: Using generated b charge

 The result of top asymmetry reconstruction with 100% purity and efficiency of b charge.

Overall top polar angle improvement

- Top polar angle reconstruction for Minivector and Minivector + new recovery.
- LeptonFinder and flavour tagging is not optimized for minivector tracking

Reconstructed vertices

• Number of tracks from generated vertices (yellow) and reconstructed (crosses). Distributions do not coincide