Some Updates of $h \to \mu^+ \mu^-$ Analysis #### **General Status** - DBD-paper: reactivated, working on v01 -> v02, probably some re-do is necessary - LCWS2018 proceedings: done in soon - benchmark analysis: start to use IsolatedLeptonTagging without using impact parameter information - IDR note: in parallel with benchmark analysis - IDR itself: nothing ### Benchmark Analysis: Overview - IDR samples with v02-00-01, further analysis with v02-00-02 - Use IsolatedLeptonTagging (w/o impact parameter and yoke) and VertexInfo - Cut-based analysis (preselection) - TMVA (BDTG) - Toy MC ## Benchmark Analysis - Now impact parameter and yoke information are not used in IsolatedLeptonTagging - IsolatedLeptonTagging -> VertexInfo - $E_{CAL}/p < 0.5$, p > 10 GeV, MVA cut > 0.8 - eff. = 96.0%/95.7% for I5/s5 (95.2% in DBD, ~92% in previous) - 2 muon tracks are subjected to VertexInfo - with beam spot constraint: (x, y, z) = (150e-6, 5e-6, 0.2) [mm] #### With Constraint (x, y, z) = (150e-6, 5e-6, 0.2) [mm] I5, Gaussian fit width = 0.1964+-0.0011 mm s5, Gaussian fit width = 0.1949+-0.0011 mm #### With Constraint (x, y, z) = (150e-6, 5e-6, 0.2) [mm] I5, Gaussian fit width = $(1.483+-0.010)*10^{-5}$ mm s5, Gaussian fit width = $(1.488+-0.010)*10^{-5}$ mm #### With Constraint (x, y, z) = (150e-6, 5e-6, 0.2) [mm] I5, Gaussian fit width = $(1.709+-0.012)*10^{-8}$ mm s5, Gaussian fit width = $(1.670+-0.012)*10^{-8}$ mm # Chisquare of vertex finding badly fitted events will be rejected by this cut requiring < 20 Table 5: List of selection cuts. Definition of variables are written in the text. #### Preselection | # | variable | cut | |----|------------------------------------|----------------| | 0 | nothing | no cut | | 1 | # μ^\pm | =1 | | 2 | $\chi^2/\mathrm{Ndf}(\mu^{\pm})$ | 0.5 - 1.5 | | 3 | $\chi^2/\text{Ndf}(\text{vertex})$ | < 20 | | 4 | $ r_z $ | < 0.5 mm | | 5 | $\sigma(M_{\mu^+\mu^-})$ | < 1 GeV | | 6 | $M_{\mu^+\mu^-}$ | 100 - 130 GeV | | 7 | $\cos heta_{\mu^+\mu^-}$ | < 0.55 | | 8 | N_{P_t} | =0 | | 9 | $E_{ m vis}$ | 125 - 300 GeV | | 10 | missing P_t | > 5 GeV | | 11 | $ \cos\theta_{ m miss} $ | < 0.99 | Table 6: Cut table of nnh500-L-15. Table 8: Cut table of nnh500-L-s5. | # | $v\overline{v}h$ | $q\overline{q}h/\ell^+\ell^-h$ | $f\overline{f}h$ | 2f | 4f | $\gamma\gamma \rightarrow 4f$ | # | $v\overline{v}h$ | $q\overline{q}h/\ell^+\ell^-h$ | $f\overline{f}h$ | 2f | 4f | $\gamma\gamma \rightarrow 4f$ | |----|--------------------|--------------------------------|-----------------------|-----------------------|-----------------------|-------------------------------|----|----------------------------|--------------------------------|-----------------------|-----------------------|-----------------------|-------------------------------| | | $h o \mu^+ \mu^-$ | $h ightarrow \mu^+ \mu^-$ | other | | | | | $h \rightarrow \mu^+\mu^-$ | $h o \mu^+ \mu^-$ | other | | | | | 0 | 57.54 | 31.12 | 4.122×10^{5} | 1.084×10^{7} | 3.808×10^{7} | 3.329×10^{5} | 0 | 57.54 | 31.12 | 4.122×10^{5} | 1.084×10^{7} | 3.808×10^{7} | 3.348×10^{5} | | 1 | 55.15 | 28.15 | 7102.10 | 2.141×10^{6} | 1.214×10^{6} | 1.683×10^{4} | 1 | 54.99 | 28.08 | 7080.17 | 2.144×10^6 | 1.216×10^6 | 1.679×10^4 | | 2 | 53.94 | 27.69 | 6976.17 | 1.971×10^{6} | 1.072×10^{6} | 1.447×10^4 | 2 | 53.64 | 27.58 | 6943.93 | 1.968×10^{6} | 1.071×10^{6} | 1.445×10^4 | | 3 | 53.57 | 27.53 | 6207.86 | 1.916×10^6 | 9.844×10^{5} | 1.377×10^{4} | 3 | 53.30 | 27.42 | 6196.70 | 1.912×10^6 | 9.840×10^{5} | 1.373×10^4 | | 4 | 53.04 | 27.21 | 6139.05 | 1.895×10^{6} | 9.744×10^{5} | 1.367×10^{4} | 4 | 52.74 | 27.14 | 6131.87 | 1.891×10^{6} | 9.736×10^{5} | 1.362×10^4 | | 5 | 52.27 | 26.66 | 6051.78 | 1.434×10^{6} | 9.142×10^{5} | 1.326×10^{4} | 5 | 52.17 | 26.70 | 6066.94 | 1.518×10^{6} | 9.256×10^{5} | 1.330×10^4 | | 6 | 50.91 | 25.99 | 162.69 | 4.045×10^4 | 3.030×10^4 | 372.08 | 6 | 50.75 | 26.06 | 161.71 | 4.405×10^4 | 3.062×10^4 | 376.44 | | 7 | 50.90 | 25.95 | 121.27 | 2.560×10^4 | 2.887×10^4 | 371.53 | 7 | 50.74 | 26.02 | 117.62 | 2.724×10^4 | 2.918×10^4 | 375.89 | | 8 | 50.74 | 0.17 | 3.66 | 2.510×10^4 | 1.684×10^4 | 200.61 | 8 | 50.57 | 0.19 | 3.70 | 2.660×10^4 | 1.688×10^4 | 208.01 | | 9 | 50.12 | 0.03 | 2.56 | 1.261×10^4 | 1.152×10^4 | 166.30 | 9 | 49.98 | 0.03 | 2.56 | 1.385×10^4 | 1.166×10^4 | 170.06 | | 10 | 49.94 | 0.02 | 2.56 | 975.81 | 1.095×10^4 | 150.45 | 10 | 49.82 | 0.01 | 2.56 | 1094.75 | 1.111×10^4 | 156.76 | | 11 | 48.90 | 0.01 | 2.56 | 123.25 | 9914.68 | 140.71 | 11 | 48.80 | 0.01 | 2.56 | 67.04 | 1.005×10^4 | 144.83 | # TMVA input # Result (preliminary) - Perform preselection, TMVA(BDTG), toy MC - 15: 41.1% (last time 38.2%) - s5: 39.78% (last time 42.8%) - I think all results have rather large uncertainty (not checked, could be +-5%?), because statistics of SM background is limited. - need to loose preselection? ---> more statistics, probably more stable TMVA and toy MC