Some Updates of $h \to \mu^+ \mu^-$ Analysis

General Status

- DBD-paper: reactivated, working on v01 -> v02, probably some re-do is necessary
- LCWS2018 proceedings: done in soon
- benchmark analysis: start to use IsolatedLeptonTagging without using impact parameter information
- IDR note: in parallel with benchmark analysis
- IDR itself: nothing

Benchmark Analysis: Overview

- IDR samples with v02-00-01, further analysis with v02-00-02
- Use IsolatedLeptonTagging (w/o impact parameter and yoke) and VertexInfo
- Cut-based analysis (preselection)
- TMVA (BDTG)
- Toy MC

Benchmark Analysis

- Now impact parameter and yoke information are not used in IsolatedLeptonTagging
- IsolatedLeptonTagging -> VertexInfo
 - $E_{CAL}/p < 0.5$, p > 10 GeV, MVA cut > 0.8
 - eff. = 96.0%/95.7% for I5/s5 (95.2% in DBD, ~92% in previous)
 - 2 muon tracks are subjected to VertexInfo
 - with beam spot constraint: (x, y, z) = (150e-6, 5e-6, 0.2) [mm]

With Constraint (x, y, z) = (150e-6, 5e-6, 0.2) [mm]

I5, Gaussian fit width = 0.1964+-0.0011 mm

s5, Gaussian fit width = 0.1949+-0.0011 mm

With Constraint (x, y, z) = (150e-6, 5e-6, 0.2) [mm]

I5, Gaussian fit width = $(1.483+-0.010)*10^{-5}$ mm

s5, Gaussian fit width = $(1.488+-0.010)*10^{-5}$ mm

With Constraint (x, y, z) = (150e-6, 5e-6, 0.2) [mm]

I5, Gaussian fit width = $(1.709+-0.012)*10^{-8}$ mm

s5, Gaussian fit width = $(1.670+-0.012)*10^{-8}$ mm

Chisquare of vertex finding

badly fitted events will be rejected by this cut requiring < 20

Table 5: List of selection cuts. Definition of variables are written in the text.

Preselection

#	variable	cut
0	nothing	no cut
1	# μ^\pm	=1
2	$\chi^2/\mathrm{Ndf}(\mu^{\pm})$	0.5 - 1.5
3	$\chi^2/\text{Ndf}(\text{vertex})$	< 20
4	$ r_z $	< 0.5 mm
5	$\sigma(M_{\mu^+\mu^-})$	< 1 GeV
6	$M_{\mu^+\mu^-}$	100 - 130 GeV
7	$\cos heta_{\mu^+\mu^-}$	< 0.55
8	N_{P_t}	=0
9	$E_{ m vis}$	125 - 300 GeV
10	missing P_t	> 5 GeV
11	$ \cos\theta_{ m miss} $	< 0.99

Table 6: Cut table of nnh500-L-15.

Table 8: Cut table of nnh500-L-s5.

#	$v\overline{v}h$	$q\overline{q}h/\ell^+\ell^-h$	$f\overline{f}h$	2f	4f	$\gamma\gamma \rightarrow 4f$	#	$v\overline{v}h$	$q\overline{q}h/\ell^+\ell^-h$	$f\overline{f}h$	2f	4f	$\gamma\gamma \rightarrow 4f$
	$h o \mu^+ \mu^-$	$h ightarrow \mu^+ \mu^-$	other					$h \rightarrow \mu^+\mu^-$	$h o \mu^+ \mu^-$	other			
0	57.54	31.12	4.122×10^{5}	1.084×10^{7}	3.808×10^{7}	3.329×10^{5}	0	57.54	31.12	4.122×10^{5}	1.084×10^{7}	3.808×10^{7}	3.348×10^{5}
1	55.15	28.15	7102.10	2.141×10^{6}	1.214×10^{6}	1.683×10^{4}	1	54.99	28.08	7080.17	2.144×10^6	1.216×10^6	1.679×10^4
2	53.94	27.69	6976.17	1.971×10^{6}	1.072×10^{6}	1.447×10^4	2	53.64	27.58	6943.93	1.968×10^{6}	1.071×10^{6}	1.445×10^4
3	53.57	27.53	6207.86	1.916×10^6	9.844×10^{5}	1.377×10^{4}	3	53.30	27.42	6196.70	1.912×10^6	9.840×10^{5}	1.373×10^4
4	53.04	27.21	6139.05	1.895×10^{6}	9.744×10^{5}	1.367×10^{4}	4	52.74	27.14	6131.87	1.891×10^{6}	9.736×10^{5}	1.362×10^4
5	52.27	26.66	6051.78	1.434×10^{6}	9.142×10^{5}	1.326×10^{4}	5	52.17	26.70	6066.94	1.518×10^{6}	9.256×10^{5}	1.330×10^4
6	50.91	25.99	162.69	4.045×10^4	3.030×10^4	372.08	6	50.75	26.06	161.71	4.405×10^4	3.062×10^4	376.44
7	50.90	25.95	121.27	2.560×10^4	2.887×10^4	371.53	7	50.74	26.02	117.62	2.724×10^4	2.918×10^4	375.89
8	50.74	0.17	3.66	2.510×10^4	1.684×10^4	200.61	8	50.57	0.19	3.70	2.660×10^4	1.688×10^4	208.01
9	50.12	0.03	2.56	1.261×10^4	1.152×10^4	166.30	9	49.98	0.03	2.56	1.385×10^4	1.166×10^4	170.06
10	49.94	0.02	2.56	975.81	1.095×10^4	150.45	10	49.82	0.01	2.56	1094.75	1.111×10^4	156.76
11	48.90	0.01	2.56	123.25	9914.68	140.71	11	48.80	0.01	2.56	67.04	1.005×10^4	144.83

TMVA input

Result (preliminary)

- Perform preselection, TMVA(BDTG), toy MC
- 15: 41.1% (last time 38.2%)
- s5: 39.78% (last time 42.8%)

- I think all results have rather large uncertainty (not checked, could be +-5%?), because statistics of SM background is limited.
 - need to loose preselection? ---> more statistics, probably more stable TMVA and toy MC