Update on e+e- -> Z gamma benchmark analysis

SOKENDAI Takahiro Mizuno

- I'm working on photon energy calibration.
- Today I will discuss
 - (1) Comparison of the Resolved Energy of Photon
 - for each Reconstruction Method
 - (2) Distribution of Photon Energy and Photon Angle in PFO
 - (3) Estimation of Energy Resolution

Determine the energy of photon and ³ muons based on measured direction angle

Direction Angle θ: azimuthal angle φ: polar angle

- 4-momentum conservation is considered.
 - The mass of muon is neglected.

Case 1:

Using $(\theta_{\mu}, \theta_{\mu}, \theta_{\gamma}, \phi_{\mu}, \phi_{\mu}, \phi_{\gamma})$ -> Determine $(E_{\mu}, E_{\mu}, E_{\gamma})$

Case 2: Consider Beamstrahlung

Jsing
$$(\theta_{\mu}, \theta_{\mu}, \theta_{\gamma}, \phi_{\mu}, \phi_{\mu}, \phi_{\gamma})$$

-> Determine (E_{μ} -, E_{μ} +, E_{γ} ,EISR)

Case 3: Consider **Beamstrahlung** and **Crossing Angle**

Using $(\theta_{\mu}, \theta_{\mu}, \theta_{\gamma}, \phi_{\mu}, \phi_{\mu}, \phi_{\gamma})$ -> Determine $(E_{\mu}, E_{\mu}, E_{\gamma}, E_{ISR})$

Case 4: Case 3 using muons' energies Using (θ_{μ} -, θ_{μ} +, θ_{γ} , ϕ_{μ} -, ϕ_{μ} +, ϕ_{γ} , E_{μ} -, E_{μ} +) -> Determine (E_{γ} , E_{ISR})

MCTruth Energy of Photon in my Signal Channel

photonEMC {pdg0==13 && abs(mzgen-91.2)<10. && coneen > -0.5}

Determine the energy of photon and ⁵ muons based on measured direction angle

Direction Angle θ: azimuthal angle φ: polar angle

- 4-momentum conservation is considered.
 - The mass of muon is neglected.

Case 1:

Using $(\theta_{\mu}, \theta_{\mu}, \theta_{\gamma}, \phi_{\mu}, \phi_{\mu}, \phi_{\gamma})$ -> Determine $(E_{\mu}, E_{\mu}, E_{\gamma})$

Case 2: Consider **Beamstrahlung**

Using
$$(\theta_{\mu}, \theta_{\mu}, \theta_{\gamma}, \phi_{\mu}, \phi_{\mu}, \phi_{\gamma})$$

-> Determine (E_{μ} -, E_{μ} +, E_{γ} ,EISR)

Case 3: Consider **Beamstrahlung** and **Crossing Angle**

Using $(\theta_{\mu}, \theta_{\mu}, \theta_{\gamma}, \phi_{\mu}, \phi_{\mu}, \phi_{\gamma})$ -> Determine (E_{μ}-,E_{μ}+,E_{γ},E_{ISR})

Case 4: Case 3 using muons' energies Using (θ_{μ} -, θ_{μ} +, θ_{γ} , ϕ_{μ} -, ϕ_{μ} +, ϕ_{γ} , E_{μ} -, E_{μ} +) -> Determine (E_{γ} , E_{ISR}) Case 1

$$\begin{cases} E_{\mu} + E_{\mu^{+}} + E_{\gamma} = 500 \\ E_{\mu} sin\theta_{\mu} cos\phi_{\mu} + E_{\mu^{+}} sin\theta_{\mu^{+}} cos\phi_{\mu^{+}} + E_{\gamma} sin\theta_{\gamma} cos\phi_{\gamma} = 0 \\ E_{\mu} sin\theta_{\mu} sin\phi_{\mu} + E_{\mu^{+}} sin\theta_{\mu^{+}} sin\phi_{\mu^{+}} + E_{\gamma} sin\theta_{\gamma} sin\phi_{\gamma} = 0 \\ E_{\mu} cos\theta_{\mu} + E_{\mu^{+}} cos\theta_{\mu^{+}} + E_{\gamma} cos\theta_{\gamma} = 0 \end{cases}$$

Case2: Consider Beamstrahlung

$$\begin{split} E_{\mu} + E_{\mu^{+}} + E_{\gamma} + |P_{ISR}| &= 500 \\ E_{\mu} sin\theta_{\mu} cos\phi_{\mu} + E_{\mu^{+}} sin\theta_{\mu^{+}} cos\phi_{\mu^{+}} + E_{\gamma} sin\theta_{\gamma} cos\phi_{\gamma} &= 0 \\ E_{\mu} sin\theta_{\mu} sin\phi_{\mu} + E_{\mu^{+}} sin\theta_{\mu^{+}} sin\phi_{\mu^{+}} + E_{\gamma} sin\theta_{\gamma} sin\phi_{\gamma} &= 0 \\ E_{\mu} cos\theta_{\mu} + E_{\mu^{+}} cos\theta_{\mu^{+}} + E_{\gamma} cos\theta_{\gamma} + P_{ISR} &= 0 \end{split}$$

Case 3: Consider Beamstrahlung + Crossing Angle

$$\begin{split} E_{\mu} + E_{\mu^{+}} + E_{\gamma} + |P_{ISR}| &= 500 \\ E_{\mu} \sin\theta_{\mu} \cos\phi_{\mu} + E_{\mu^{+}} \sin\theta_{\mu^{+}} \cos\phi_{\mu^{+}} + E_{\gamma} \sin\theta_{\gamma} \cos\phi_{\gamma} + |P_{ISR}| \sin\alpha &= 500 \sin\alpha \\ E_{\mu} \sin\theta_{\mu} \sin\phi_{\mu} + E_{\mu^{+}} \sin\theta_{\mu^{+}} \sin\phi_{\mu^{+}} + E_{\gamma} \sin\theta_{\gamma} \sin\phi_{\gamma} &= 0 \\ E_{\mu} \cos\theta_{\mu} + E_{\mu^{+}} \cos\theta_{\mu^{+}} + E_{\gamma} \cos\theta_{\gamma} \pm |P_{ISR}| \cos\alpha &= 0 \end{split}$$

Crossing Angle ($\equiv 2\alpha$)

Case 4: Using measured muon energies

 $\begin{cases} E_{\mu} + E_{\mu^{+}} + E_{\gamma} + |P_{ISR}| = 500 \\ E_{\mu} \sin\theta_{\mu} \cos\phi_{\mu} + E_{\mu^{+}} \sin\theta_{\mu^{+}} \cos\phi_{\mu^{+}} + E_{\gamma} \sin\theta_{\gamma} \cos\phi_{\gamma} + |P_{ISR}| \sin\alpha = 500 \sin\alpha \\ E_{\mu} \sin\theta_{\mu} \sin\phi_{\mu} + E_{\mu^{+}} \sin\theta_{\mu^{+}} \sin\phi_{\mu^{+}} + E_{\gamma} \sin\theta_{\gamma} \sin\phi_{\gamma} = 0 \\ E_{\mu} \cos\theta_{\mu} + E_{\mu^{+}} \cos\theta_{\mu^{+}} + E_{\gamma} \cos\theta_{\gamma} \pm |P_{ISR}| \cos\alpha = 0 \end{cases}$

Case 4': Using measured muon energies

 $\begin{cases} E_{\mu} + E_{\mu^{+}} + E_{\gamma} + |P_{ISR}| = 500\\ E_{\mu}sin\theta_{\mu}cos\phi_{\mu} + E_{\mu^{+}}sin\theta_{\mu^{+}}cos\phi_{\mu^{+}} + E_{\gamma}sin\theta_{\gamma}cos\phi_{\gamma} + |P_{ISR}|sin\phi = 500sin\phi\\ E_{\mu}sin\theta_{\mu}sin\phi_{\mu} + E_{\mu^{+}}sin\theta_{\mu^{+}}sin\phi_{\mu^{+}} + E_{\gamma}sin\theta_{\gamma}sin\phi_{\gamma} = 0\\ E_{\mu}cos\theta_{\mu} + E_{\mu^{+}}cos\theta_{\mu^{+}} + E_{\gamma}cos\theta_{\gamma} \pm |P_{ISR}|c\phi = 0 \end{cases}$

This is of no use when $\sin\theta_{\gamma}$ or $\sin\phi_{\gamma}=0$??

- I'm working on photon energy calibration.
- Today I will discuss

(1) Comparison of the Resolved Energy of Photon

for each Reconstruction Method

(2) Distribution of Photon Energy and Photon Angle in PFO

(3) Estimation of Energy Resolution

14

- I'm working on photon energy calibration.
- Today I will discuss

 (1) Comparison of the Resolved Energy of Photon for each Reconstruction Method
 (2) Distribution of Photon Energy and Photon Angle in PFO
 - (3) Estimation of Energy Resolution

Distribution of PFO Photon Energy and Angle

Distribution of PFO Photon Energy

- It is said that same effect is seen by other analyzers who deal with high-energy photons.
- Most likely it seems to come from a miscalibration of the electromagnetic scale for the HCal in PandoraPFA.

Distribution of PFO Photon Theta

17

When $|\cos \theta|$ is larger (except very forward region), bias gets more prominent. In the PFO, the center of shower seems to be shifted to B-field direction due to the B field.

- I'm working on photon energy calibration.
- Today I will discuss
 (1) Comparison of the Resolved Energy of Photon for each Reconstruction Method
 (2) Distribution of Photon Energy and Photon Angle

in PFO

(3) Estimation of Energy Resolution

Next Step

- In photon energy reconstruction, I will consider all 4 equations.
- I'm planning to estimate $\frac{\sigma}{\sqrt{n}}$, which depends on $\theta(\gamma)$, $\phi(\gamma)$, $E(\gamma)$...