$e^+e^- \rightarrow \tau^+ \tau^-$

Keita YUMINO

SOKENDAI

February 9, 2019

Introduction

Tau-lepton

Tau-lepton is the heaviest lepton.

 $m_{ au} = 1776.86 \pm 0.12$ MeV

 $\tau^+\tau^-$ pair is the dominant leptonic decay of the Higgs boson.

Keita YUMINO (JPN)

 $e^+e^- \rightarrow \tau^+ \tau^-$

Motivation

Correct reconstruction of tau decay mode is important for

- Constraining the spin state of tau
- Measuring the CP state of Higgs boson in $H \to \tau^+ \tau^-$ decays

- tau reconstruction needs particle flow
 - total jet energy
 - properties of each particle in jet

Motivation

$- e^+e^- \rightarrow \tau^+\tau^-$ at 500 GeV

-Study coupling of $au_{\scriptscriptstyle { m L,R}}$ to Z,γ

-compare Large & Small detectors

Keita YUMINO (JPN)

 $e^+e^- \to \tau^+ \ \tau^-$

February 9, 2019 4 / 21

Simulation setup

Signal: $e^+e^- \rightarrow \tau^+\tau^-$

- High mass $\tau\tau$: m($\tau\tau$)>480 [GeV]
- Low mass $\tau\tau$: m($\tau\tau$)<480 [GeV]

Method

1:Find first au seed

• charged PFO with highest p_T

 $e^+e^- \rightarrow \tau^+ \tau^-$

Method

2:Find second au seed

• charged PFO with second highest p_T and $\delta \phi > \pi/2$

 $e^+e^- \rightarrow \tau^+ \tau^-$

Method

Keita YUMINO (JPN)

February 9, 2019 8 / 21

• Highest p_T

• angle heta formed by first au seed and second au seed

first au seeds and second au seeds are almost back-to-back

Keita YUMINO (JPN)

 $e^+e^- \rightarrow \tau^+ \tau^-$

February 9, 2019

12 / 21

Keita YUMINO (JPN)

 $e^+e^- \rightarrow \tau^+ \tau^-$

February 9, 2019 13 / 21

Keita YUMINO (JPN)

 $e^+e^- \rightarrow \tau^+ \tau^-$

February 9, 2019

Comparison between Large and Small ILD model

Large model is better than small model to count photons

Comparison between Large and Small ILD model

Large model is better than small model to count photons

event selection

- Cut 1:visible au jet mass < 2.5 [GeV]
- Cut2:acolineality between τ jet seed tracks < 0.15 [rad]
- Cut3:energy sum of pfos outside cones < 40 [GeV] p_T sum of pfos outside cones < 20 [GeV]
- Cut4:Cone 1 particle's charge × Cone 2 particle's charge = -1
- Cut5:High energy $\mu^+\mu^-\& e^+e^-$ cut
- Cut6:visible mass of 2 au jet system < 400 GeV
- Cut7:angle between τ jet axes > 3.05 [rad]
- Cut8:total number of PFOs < 12

 $e^+e^-
ightarrow au^+ au^-$

Cut table of Large detectors model

Preliminary Beam Polarisation = (-80, +30), Integrated Lumi = 1800.0

selected events/1000

PROCESS	ttHiMass	ttLoMass	mumu	4f_ZZ_WW_Mix_L	4fZZLeptonic	
UNCUT	593.21	2310.53	3211.59	864.47	65.52	
CUT 1	492.65	1787.35	2637.14	684.99	47.76	
CUT 2	482.91	272.37	873.61	119.57	4.55	
CUT 3	451.89	215.55	778.98	104.84	2.01	
CUT 4	428.37	197.76	764.75	96.83	1.17	
CUT 5	428.35	197.76	86.20	87.72	0.83	
CUT 6	427.45	197.63	24.78	70.01	0.71	
CUT 7	425.51	132.11	14.05	27.50	0.48	
CUT 8	425.38	132.00	14.05	27.49	0.48	
PROCESS	4fsingLeZee	2fZhadronic	4f_sZ_sW_Mix_L	4fWWLeptonic	4fsingLeWLeptonic	4fsingleZnunu
UNCUT	8090.16	35325.10	1066.31	832.88	2744.43	294.51
CUT 1	5164.76	5060.10	781.16	667.61	2071.75	184.71
CUT 2	355.88	73.24	74.44	115.51	263.39	4.39
CUT 3	159.89	8.54	59.45	101.09	221.57	3.38
CUT 4	112.08	0.73	53.05	92.18	201.93	1.72
CUT 5	104.91	0.73	50.76	92.08	201.93	1.72
CUT 6	73.81	0.73	37.21	91.06	162.92	1.71
CUT 7	48.69	0.71	14.71	37.81	65.97	0.76

Keita YUMINO (JPN)

 $e^+e^- \rightarrow \tau^+ \tau^-$

Preliminary

Summary and Plan

- \bullet I simulated $e^+e^- \rightarrow \tau^+\tau^-$ and found jets in the process
- About 99% of energy is inside cone
 - Inside cone
 - $\bigcirc\,$ all charged tau daughters are inside best cone
 - neutral tau daughters are mostly photon and sometimes neutral tau daughters are outside cone
- Cut table including major backgrounds were made.
- After including all cuts, most of the backgrounds and Low mass $\tau \tau$ are rejected
- I measured τ polarization by using $\tau \rightarrow \nu \pi$.

backup

Keita YUMINO (JPN)

 $e^+e^- \rightarrow \tau^+ \ \tau^-$

February 9, 2019 21 / 21