TCMB report

Shin MICHIZONO KEK/Linear Collider Collaboration (LCC)

- Recent news about the ILC
- European Strategy input (report at LCB/ICFA)

Recommendations on the ILC from three economic parties (Feb.20,2019)

Expectations for manifestation of intention to attract international linear colliders Keidanren (Japan Business Federation) The Japan Chamber of Commerce and Industry Keizai Doyukai (Japan Association of Corporate Executives)

Policy(提言·報告書) 科学技術、情報通信、知財政策

国際リニアコライダー誘致に関する意思表明への期待

2019年2月20日 一般社団法人 日本経済団体連合会 日本商工会議所 公益社団法人 経済同友会

国際リニアコライダー (ILC) は、宇宙の起源や仕組みを研究する素粒子物理学実験用加速器施設であり、世界中の研究者が協力して設計・開発を進めている。

こうした中、日本の素粒子物理学分野発展への貢献や技術レベルの高さから、ILCのホスト国として、この分野の研究を牽引することが、諸外国の多くの研究者から期待されている。ILCは、アジア初の大型国際科学技術拠点として、海外から数千人の優秀な研究者が集まり、国内外の最先端の技術が集積することも想定される。

日本政府には、ILC誘致に向けた「国際協議開始の意思表明 (EoI: Expression of Interest)」を関係国に発出し、国際協議の開始を関係諸国に呼びかけることを期待する。その上で、今後の誘致の最終判断に向け、誘致計画の精緻化、発現が期待される諸効果のさらなる検証、学術界をはじめとする関係者の理解の醸成に努めていただきたい。

以上

▶ 「科学技術、情報通信、知財政策」はこちら

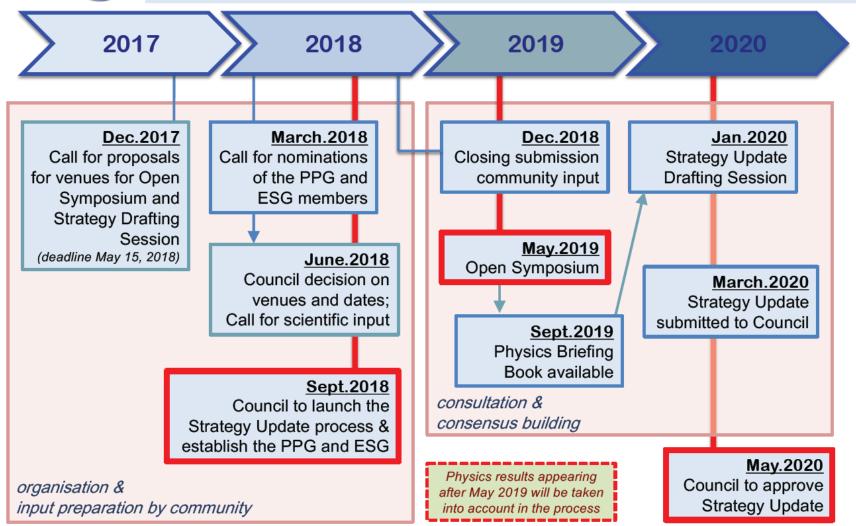
TCMB 20190227 2

Federation of Diet Members for the ILC (Feb.22,2019)

According to the Federation of diet members on Feb.22, MEXT will announce the government's "view" at ICFA on March 7.

It is expected to explain the idea of participating in discussions with overseas expecting construction in Japan while continuing discussion domestically about the pros and cons of

attraction.



- It is foreseen that the Japanese Government will announce Japan's official position toward ILC at the LCB/ICFA meeting in March 2019 in Tokyo.
- ILC and ICFA will discuss their position concerning ILC in the update of the European Strategy for Particle Physics (ESPP).

TCMB 20190227 3

European Particle Physics Strategy Update

December 14th, 2017 Strategy Secretariat 24

Halina Abramowicz

ILC European Strategy documents

(1)ILC project overview

The International Linear Collider A Global Project

Prepared by: Hiroaki Aihara¹, Jonathan Bagger², Philip Bambade³, Barry Barish⁴, Ties Behnke⁵, Alain Bellerive⁶, Mikael Berggren⁵, James Brau⁷, Martin Breidenbach⁸, Ivanka Bozovic-Jelisavcic⁹, Philip Burrows¹⁰, Massimo Caccia¹¹, Paul Colas¹², Dmitri Denisov¹³, Gerald Eigen¹⁴, Lyn Evans¹⁵, Angeles Faus-Golfe³, Brian Foster^{5,10}, Keisuke Fujii¹⁶, Juan Fuster¹⁷, Frank Gaede⁵, Jie Gao¹⁸, Paul Grannis¹⁹, Christophe Grojean⁵, Andrew Hutton²⁰, Marek Idzik²¹, Andrea Jeremie²², Kiyotomo Kawagoe²³, Sachio Komamiya^{1,24}, Tadeusz Lesiak²⁵, Aharon Levy²⁶, Benno List⁵, Jenny List⁵, Shinichiro Michizono¹⁶, Akiya Miyamoto¹⁶, Joachim Mnich⁵, Hugh Montgomery²⁰, Hitoshi Murayama²⁷, Olivier Napoly¹², Yasuhiro Okada¹⁶, Carlo Pagani²⁸, Michael Peskin⁸, Roman Poeschl⁸, Francois Richard³, Aidan Robson²⁹, Thomas Schoerner-Sadenius⁵, Marcel Stanitzki⁵, Steinar Stapnes¹⁵, Jan Strube^{7,30}, Atsuto Suzuki³¹, Junping Tian¹, Maksym Titov¹², Marcel Vos¹⁷, Nicholas Walker⁵, Hans Weise⁵, Andrew White³², Graham Wilson³³, Marc Winter³⁴, Sakue Yamada^{1,16}, Akira Yamamoto¹⁶, Hitoshi Yamamoto³⁵ and Satoru Yamashita¹.

(2) European ILC project plans

The International Linear Collider A European Perspective

Prepared by: Philip Bambade¹, Ties Behnke², Mikael Berggren², Ivanka Bozovic-Jelisavcic³, Philip Burrows⁴, Massimo Caccia⁵, Paul Colas⁶, Gerald Eigen⁷, Lyn Evans⁸, Angeles Faus-Golfe¹, Brian Foster^{2,4}, Juan Fuster⁹, Frank Gaede², Christophe Grojean², Marek Idzik¹⁰, Andrea Jeremie¹¹, Tadeusz Lesiak¹², Aharon Levy¹³, Benno List², Jenny List², Joachim Mnich², Olivier Napoly⁶, Carlo Pagani¹⁴, Roman Poeschl¹, Francois Richard¹, Aidan Robson¹⁵, Thomas Schoerner-Sadenius², Marcel Stanitzki², Steinar Stapnes⁸, Maksym Titov⁶, Marcel Vos⁹, Nicholas Walker², Hans Weise², Marc Winter¹⁶.

¹LAL-Orsay/CNRS, ²DESY, ⁸INN VINCA, Belgrade, ⁴Oxford U.,
⁵U. Insubria, ⁶CEA/Irfu, U. Paris-Saclay, ⁷U. Bergen, ⁸CERN, ⁹IFIC,
U. Valencia-CSIC, ¹⁰AGH, Kraków, ¹¹LAPP/CNRS, ¹²IFJPAN,
Kraków, ¹⁸Tel Aviv U., ¹⁴INFN, ¹⁵U. Glasgow, ¹⁶IPHC/CNRS.

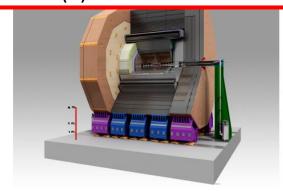
https://ilchome.web.cern.ch/content/ilc-european-strategy-document

IPIC, U. Valencia-CSIC, ¹⁶ IHEP, ¹⁸ Stony Brook U.,
 Jefferson Lab, ²¹ AGH, Kraków, ²² LAPP/CNRS,
 Kynsku U., ²⁴ Waseda U., ²⁵ IFJPAN, Kraków,
 Tel Aviv U., ²¹ U. California, Berkeley, ²⁸ INFN,
 U. Glasyow, ³⁰ PNNL, ³¹ kwate Prefeature U., ³² U. Texas,
 Arkington, ³³ U. Kansas, ³⁴ IPHC/CNRS, ³⁵ U. Tohoku

(Representing the Linear Collider Collaboration and the global ILC community.)

100 pager supporting document

The International Linear Collider A Global Project*


Prepared by: Ties Behnke¹, Mikael Berggren¹, James Brau², Keisuke Fujii², Juan Fuster⁴, Frank Gaede¹, Christophe Grojean¹, Benno List¹, Jenny List¹, Shinichiro Michizono², Akiya Miyamoto², Michael Peskin⁵, Roman Poeschl⁶, Frank Simon⁷, Junping Tian⁸, Marcel Vos⁴, Andrew White⁹, Graham Wilson¹⁰ and Hitoshi Yamamoto¹¹

*DESY, ²U. Oregor, ³KEK, *IFIC, U. Valenccia-CSIC, ⁵SLAC, ⁶LAL-Orsazy/CNRS, ⁵Max Planck, Murrido, ⁸U. Tokoo, ³U. Texas, Arkington, ⁴⁰U. Kanzas, ⁴¹U. Tohoku

(Representing the Linear Collider Collaboration and the global ILC community.)
(Dated: February 20, 2019)

Input from the International Linear Collider community for the European Strategy Update supplementary material $\,$

(3) ILD detector

The ILD Detector at the ILC

Contact: Ties Behnke

Deutsches Elektwern Syndrotten, DESY, Germany


(Contribution to the update of the European Strategy for Particle Physics by the ILD Concept Group)

(Dated: December 18, 2018)

The international large detector, ILD, is a detector concept which has been developed for the electron-positron collider ILC. The detector has been optimized for precision physics in a range of energies between 90 GeV and 1 TeV. ILD features a high precision, large volume combined silicon and gaseous tracking system, together with a high granularity solorimeter all insides a \$ 3 T solemoidal magnetic field. The paradigm of particle flow has been the guiding principle of the design of ILD. In this document the required performance of the detector, the proposed implementation and the radiuses of the different technologies needed for the implementation are discussed. This is done in the framework of the ILC collider proposal, now under consideration in Japan, and includes site specific aspects needed to build and operate the detector at the proposal ILC site in Japan.

(1) ILC project overview

- Introduction
- II. Physics
- III. Collider
- IV. Detectors
 - A. The full detector systems, ILD and SiD
 - B. Detector R&D
- V. Software and computing
- VI. Discussion and summary

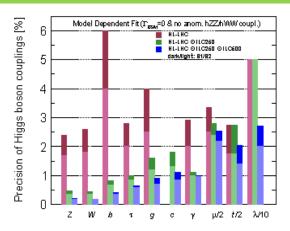


FIG. 1. Projected Higgs boson coupling uncertainties for the LHC and ILC using the model-dependent assumptions appropriate to the LHC Higgs coupling fit. The dark- and light-red bars represent the projections in the scenarios S1 and S2 presented in [9, 10]. The scenario S1 refers to analyses with

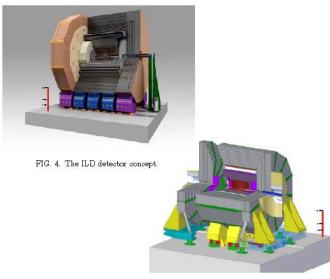


FIG. 5. The SiD detector concept

(2) European ILC project plans

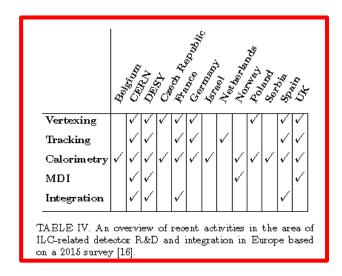
- I. Introduction
- II. Accelerator
 - A. ILC accelerator competence in Europe
 - B. ILC accelerator Preparation Phase activities in Europe
 - C. ILC accelerator in-kind contributions from Europe during the ILC Construction Phase
 - D. Organisation of the accelerator activities

	Çerdî		test.	Q day	Ziger Ziger	S. disco.
Linac						
Cryomodules	V	V	V	V		
SCRF Cavities	1		1	V		
Couplers and Tuners	1	1		V		
Cold Vacuum	1				√	
Cavity String Assembly	✓	✓				
SC Magnets	✓			✓		$ \checkmark $
Infrastructure						
Accelerator Module Test Facility (AMTF)	✓			√	√	
Cryogenics	√					
Sites & Buildings						
AMTF hall	√					

TABLE I. Responsibility matrix for cryomodule production and testing for the European XFEL. More details and a similar matrix can be found in [2] concerning construction of SCRF modules for the ESS linac.

	SCRF	HLRF	Sources	Damping Rings	Instru- mentation	Beam Dynamics	Beam Delivery System	Cryogenics
CERN		a,o	0	G,C,O	C,G	O,G	C,G	0
France	X,E,G	· ·	G		A,G	Ġ	C,G	
Germany	Ż,Ġ	Х	G	G	Χ̈́	G		x,o
Italy	X,E,G			G				'
Poland	X,È		0		E,O			X,E,O
Russia	Χ̈́		G		·			' '
Spain	X,E				A		C,G	
Sweden	Ė						Ğ	
Switzerland					X,C			
UK	E		G	G	A,Ċ,G	C,G,A	C,G,A	

TABLE III. European expertise relevant for ILC accelerator construction, based on experience in the recent past. This is based on two major construction projects, the E-XFEL (X) and the ESS (E), several more R&D oriented efforts namely the GDE/LCC (G), ATF-2 (A), CLIC (C) and experience in other accelerator projects (O)


(2) European ILC project plans

III. Detectors

- A. ILC detector competence in Europe
- B. ILC Detector preparation phase activities in Europe
- C. Estimation of a European in-kind contribution to the ILC detectors
- D. Organisation of the detector activities

IV. Discussion

- A. Political synergy between Japan and Europe
- B. Organization of an European contribution
- C. Leveraging the expertise and the production capabilities of European industry
- D. Conclusion

(3) ILD detector

- I. Introduction
- II. The ILD Detector Design: Requirements
- III. Implementation of the ILD Detector
 - A. Vertexing System
 - B. Tracking System
 - C. Calorimeter System
 - D. The Forward System
 - E. Detector Integration and Costing
- IV. Science with ILD
- V. Integration of ILD into the Experimental Environment
- VI. The ILD Concept Group
- VII. Conclusion and Outlook

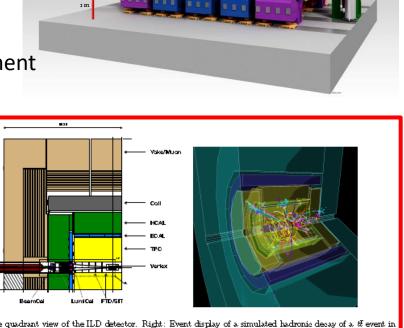


FIG. 1. Left: Single quadrant view of the ILD detector. Right: Event display of a simulated hadronic decay of a *tt* event in ILD, the colouring of the tracks show the results of the reconstruction, each colour corresponding to a reconstructed particle

Supporting document for European Strategy input

100 pager document

Other supporting documents: TDRs documents, ILC 250 machine (arXiv:1711.00568), ILC 250 physics (arXiv:1707621), SID and ILD detailed baseline designs, R&D document in preparation ...

CONTENTS					
I.	Introduction	3			
II.	ILC Machine Design	5			
	A. Design Evolution since the TDR	6			
	B. Superconducting RF Technology	8			
	1. The Quest for High Gradients	8			
	2. Further Cost Reduction R&D	11			
	3. Basic Parameters	11			
	4. Cavities	11			
	5. Power Coupler	12			
	6. Cryomodules	12			
	7. Plug-compatible design	13			
	8. High-Level Radio-frequency	14			
	9. Cryogenics	14			
	10. Series Production and Industrialisation				
	Worldwide and in Europe	15			
	C. Accelerator Design	15			
	 Electron and Positron Sources 	15			
	Damping Rings	16			
	3. Low Emittance Beam Transport: Ring				
	to Main Linac (RTML)	17			
	4. Bunch Compressors and Main Linac	17			
	Beam Delivery System and Machine				
	Detector Interface	18			
	D. Upgrade Options	20			
	 Energy upgrade 	20			
	Luminosity upgrade	21			
	Polarisation upgrade	21			
	E. Civil Engineering and Site	21			
	F. Cost and Schedule	22			
II.	ILC Running Scenarios	22			
	A. Center-of-mass energies and integrated				
	luminosities	23			
	B. Beam polarisation	24			
	C. Time Evolution and Upgrade Options	25			

	ns, R&D document in	
	Running Scenarios for the 500-GeV Machine Running Scenarios for the Staged	25
	Machine	27
IV.	Physics Case — 250 GeV A. Mystemes of the Higgs boson B. Examples of new physics influence on the	28 28
	Higgs boson C. Limitations of the LHC measurements on	29
	the Higgs boson D. $\varepsilon^+\varepsilon^- \to ZH$	30 20
	E. Search for exotic Higgs decays	30 30
	F. Effective Field Theory framework for Higgs coupling determinations	31
	G. $e^+e^- \rightarrow W^+W^-$ H. $e^+e^- \rightarrow f\bar{f}$	32 32
	I. Search for pair-production of new particles J. The central role of beam polarisation	33
У.	Physics Case - beyond 250 GeV	35
	A. Scope of ILC energy upgrades B. Improvement of ILC precision at higher	35
	energy	35 20
	C. New Higgs physics at higher energy D. Study of the top quark in e ⁺ e ⁻ reactions E. Direct searches for physics beyond the	36 36
	Standard Model	37
VI.	Detectors	37
	A. Introduction B. The SiD Detector	37 38
	1. Silicon-based Tracking	38
	2. Vertex detector	38
	3. Main tracker	39 40
	4. Main calorimeters 5. Forward calorimeters	40
	6. Magnet Coil	41
	7. Muon System	41
	8. The Machine-Detector Interface	41
	C. The ILD Detector	41
	1. Vertexing and Tracking	42
	2. Calorimetry	42

l	3. Coil and Yoke	42
ı	VII. Computing, Event Reconstruction, and	
ı	Detector Performance	43
ı	A. Core Software Tools	43
ı	B. Event Generators	43
ı	C. Simulation	44 45
ı	D. Digitzation E. Reconstruction	46
ı	Tracking	46
ı	2. Particle Flow:	48
ı	F. High-Level Reconstruction	48
ı	G. Fast Simulation	50
ı	H. Computing Concept	5C
	I. Computing Resource Estimate	5C
ĺ	VIII. Physics Simulations: Higgs	5C
ı	A. Common Procedures for Event Sections	52
	B. Analyses for Higgs Observables 1. m_k and σ_{Zk}	53 53
	1. m_k and σ_{Zk} 2. $\sigma_{\nu\nu k}$ and $\sigma_{\infty k}$	55 55
ı	3. BR $(k \to b\bar{b}/\bar{a}\bar{c}/gg)$	56
ı	4. BR($k \rightarrow WW^*/ZZ^*$)	57
ı	5. BR($h \rightarrow \tau^+\tau^-$)	58
ı	6. BR($k \rightarrow \text{invisible/exotic}$)	58
ı	7. BR($h \to \mu^+ \mu^- / \gamma \gamma / \gamma Z$)	59
	8. Higgs CP Properties	59 ,
ı	 Angular Analyses for Anomalous HVV Couplings 	59
ı	C. Estimation for Future Improvements	60
ı	D. Measurement of the Higgs boson	
	self-coupling	61
ı	IX. Physics Simulations: Electroweak Production of	of
ı	2- and 4-Fermion Final States	62
ı	Å. Analyses of $\varepsilon^+\varepsilon^- \to W^+W^-$	62
ı	 Full Simulation Analyses of TGCs 	63
	Extrapolation of TGC prospects to	
	250 GeV 3. W Mass Measurement at 250 GeV	64 65
	B. Analyses of $e^+e^- \to f\bar{f}$	66
	1. General experimental aspects	66
	2. Inclusive $e^+e^- \to f\overline{f}$ analyses	66
Į	3. e ⁺ e [−] → τ ⁺ τ [−]	67
	4. $e^+e^- \rightarrow b\overline{b}$	67
١	X. Physics Simulations: Top quark	68
ĺ	A. Selection and reconstruction of top-quark	
ĺ	pairs	68
ĺ	B. Measurement of the top quark mass	69
ĺ	C. Searches for flavour changing neutral current interactions of the top quark	70
ĺ	D. Measurement of the top quark electroweak	1.0
ĺ	couplings	70
ĺ	E. Measurement of the top quark Yukawa	
ĺ	coupling coupling	71
г		

XI. Physics program at the Z pole: Giga-Z

XII.	Global Fit to Higgs Boson Couplings and Effective Field Theory Parameters	73
	A. Elements of the fit to Higgs couplings from Effective Field Theory	73
	B. Systematic uncertainties and the importance of beam polarization	75
	 Systematic uncertainties considered in 	
	the Higgs coupling fit 2. Control of systematic uncertainties	75
	using beam polarisation	77
	C. Comparison of run scenarios for linear and circular e ⁺ e ⁻ colliders	78
	D. Comparison of the ILC and the HL-LHC Higgs capabilities	79
CIII.	Physics Simulations: Searches	84
	à 31à	84 or
	A. "Antler" signatures 1. Loop-hole free searches	85 86
	2. Sleptons	87
	3. Bosinos	22
	4. Small mass differences	90
	B. The Mono-photon signature	90
	C. New scalars	92
KIV.	Conclusion	93
	References	95