Forward backward asymmetry measurements in e-e⁺→ bb at ILC@500GeV

Update since the ILD Benchmarking days

Adrián Irles,

QQbar Analysis Meeting, 18/04/2019

Git & Note status

- ILDbench git repository https://github.com/ILDAnaSoft/ILDbench_QQbar is used for documentation and link to the group repository
- > Our group Git repository is mostly up to date. https://github.com/QQbarAnalysis
 - Tracking restoring tools
 - Reco-Truth tools
 - Kaon ID tools
 - QQbarProcessor (bb, tt) + Offline analysis scripts
 - Instructions to merge developments (push requests) https://github.com/QQbarAnalysis/QQbarAnalysis/issues
- Branch: **QQbarAnalysisBranch2018**
 - up to date for Kaon ID, bbbar (Adrian) and ttbar (Yuichi) analysis
 - VertexRestorer proccessors to be updated (beam IP smearing)
 - VertexRecoTest (TrashProccessor, etc) are in the same status that S. Bilokin left them.
 - ttbar_bb4j from S. Amjad have been just forked here.

Technical details

> Detector models: I5, s5

- /cvmfs/ilc.desy.de/sw/ILDConfig/v02-00-02/StandardConfig/production/Gear/gear_ILD_I5_o1_v02.xml
- /cvmfs/ilc.desy.de/sw/ILDConfig/v02-00-02/StandardConfig/production/Gear/gear_ILD_I5_o1_v02.xml

Software + reconstruction

- /cvmfs/ilc.desy.de/sw/x86_64_gcc49_sl6/v02-00-02
- **Physics case**: $b\overline{b}$ forward backward asymmetry for 500 GeV interaction.
 - We show only pure left polarization results.
 - Samples: /pnfs/desy.de/ilc/prod/ilc/mc-opt-3/ild/dst-merged/500-TDR_ws/2f_Z_hadronic/ILD_s5_o1_v02/v02-00-01/rv02-00-01.sv02-00-01.mILD_s5_o1_v02.E500-TDR_ws.I250114.P2f_z_h.eL.pR.n001.d_dstm_10409_1.slcio
 - Total simulated luminosity: 46fb-1 per detector model
 - Beam bkg included.

Revertexing, jet clustering

- > I reprocess the vertexing and the b-tagging using latest LCFIplus version, scripts and weight files
- > ILD benchmarking days: DurhamVertex (+ UseBeamJets=0)
 - Durham stands for the well known durham algorithm
 - Vertex stands for the LCFIPlus feature of using full vertex info as input for the jet algorithm.

T. Suehara told me about a bug on this in LCFiPlus... is it fixed??

 UseBeamJets is for the beam rejection. In case of using kT or Valencia algorithm, the particle-beam distance (diB) is defined in the algorithm. In the case of the Durham, a new distance has been proposed by LCFIPlus developers:

$$d_{iB} = \frac{2E_{i}^{2}}{E_{vis}^{2}} (1 - \cos(\theta_{iB})) \alpha^{2}$$

• The rejection of beam jets needs of an optimization of the "alpha" parameter.

Revertexing, jet clustering: update after ILD Bench. days

- > The Vertexing issue is is solved?
 - I didn't reprocess anything.
- I use ValenciaVertex (+ UseBeamJets=1, R=1.4).
 - VLC is well suited for perturbative calculations (as Durham)
 - VLC is also suited for beam rejection, using the transverse momentum the longkT. (the R=1.4 is a reasonable value, according to M. Vos)

• Vos et al, arxiv:1607.05039

Revertexing, b-tagging

- Flavour tagging:
 - Weight prefix 6q500_v04_p00_ildl5 (or s5)
 - D0ProbFileName *d0probv2_ildl5_6q500.root* (or s5)
 - z0ProbFileName z0probv2_ildl5_6q500.root (or s5)
- > For the final analysis I use the same values for the selection than in 250GeV DBD:
 - Btag1>0.9, btag2>0.2

Preselection cutFlow, IDR large vs small

	500 GeV, eLpR, I5 model			
		B/S		
	Signal	qq	Radiative Z	
Sample	100.0%	2322.9%	508.5%	
btag cut	70.2%	2.6%	230.0%	
+inv mass cut	67.2%	1.1%	3.0%	
+y23 cut	64.4%	1.2%	2.5%	
+Ey cut	61.7%	1.1%	0.7%	

	500 GeV, eLpR, s5 model				
		B/S			
	Signal	qq	Radiative Z		
Sample	100.0%	2328.3%	509.5%		
btag cut	70.1%	2.7%	231.5%		
+inv mass cut	67.1%	1.1%	2.8%		
+y23 cut	64.4%	1.1%	2.3%		
+Ey cut	61.3%	1.1%	0.6%		

- > There are no noticeable differences between both models.
- > Cuts explained in the backup.

IDR doc. benchmarking tables

Kaon ID

Working points: calculated for all tracks in secondary vertexes in tt (or bb) events before btagging+selection.

Assumed for DBD samples (bb) (Too optimistic?)

Purity of the charge measurement

- After the preselection we proceed to the final selection in which the charge of the b-jets is measured.
- We only accept events with at least two compatible charge measurements.
- For that we separate the events in different categories and we determine the purity of the charge measurement for each category independently.
 - Cat 0, only vertex info
 - Cat 1, only kaon info
 - Cat 2, both types of info in but in different jets
 - Cat 3, both types of info in one jet
- I had a bug in the plot of the ILD benchmarking days: the Kaon ID output was used wrongly, giving poor purities for cat 1-3.

Final selection efficiency

250 GeV, eLpR, DBD model		500 GeV, eLpR, I5 model		500 GeV, eLpR, s5 mode	
Cat 0	12,8 %	Cat 0	11.9%	Cat 0	11.8 %
Cat 1	6,8 %	Cat 1	4.2%	Cat 1	3.7%
at 2	4,2 %	Cat 2	3.7%	Cat 2	3.5%
at 3	9,5 %	Cat 3	7.1%	Cat 3	6.9%
otal	33,3 %	total	26.9%	total	25.9 %
		IC	DR doc.		

> The better performance of I5 wrt the s5 is due to the kaon selection.

Detector acceptance

- The acceptance is mainly associated to btagging & tracking
- L5 seems better than s5 but the statistical uncertainties are large

IDR doc.

Results

- Distribution after charge correction ("data driven") and acceptance correction (MC fudge factor).
- Fit restricted to -0.8,0.8

 $dA_{fb}^{reco+corrected} = 2.2\%$

Summary

- The differences in performance between 250GeV and 500GeV are quantitatively smaller than before.
 - We don't need to show both in the IDR note...
- The size of the sample (46fb⁻¹) makes difficult to extract further conclusions on the results or to do further improvements
 - i.e. the p-q correction is not done differentially due to the low amount of events.

TO DO List

Few hours of work:

- Launch the revertexing+jet clustering +btag again when the issue on the JetClustering+Vertexing is resolved.
- Use the PFOs for the jet direction reconstruction. We are using the tracks as in 250GeV. The PFO -angle problem seems to be solved in the IDR samples and it has much better resolution (~5% instead of ~20%)
- I might be able to find some time to prepare a naive estimation of the impact of the TOF...
 - difficulty? Unknown... If it is too difficult to have it for next meeting, I might drop it for the moment.
- Add the z0 info in the VertexRecovery... ??

Backup slides

Jet clustering in LCFIPlus

FastJet Definitions

Durham (or ee_kt)
JetDefinition jet_def(ee_kt_algorithm);

 $d_{ij} = 2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij}).$

Generalized ee_genkt

JetDefinition jet_def(ee_genkt_algorithm, R, p);

 $d_{ij} = \min(E_i^{2p}, E_j^{2p}) \frac{(1 - \cos \theta_{ij})}{(1 - \cos R)},$ $d_{iB} = E_i^{2p},$

LCFIPlus definitions

> Durham:

• is the same but divided by E²_{vis} (visible energy).

• $d_{ij} \rightarrow y_{ij}$

> Durham + Beam Distance (beam bkg rejection)

- CosR=0.5, p=1
- Both distances divided by E_{vis}^2 too.

$$d_{iB} = \frac{2 E_i^2}{E_{vis}^2} (1 - \cos(\theta_{iB})) \alpha^2$$

• $\alpha = 1$ by default

Track Recovery performance

The "other reasons" are associated to fitting problems.

• This issue does not appear in DBD samples without IP smearing (even before restoring).

Both IDR models show similar performance.

- The purity on b-quark charge measurement using vertex charge measurement is much better for 250GeV (DBD samples/software)
 - Different kinematics.
 - The track restoring was developed and optimized for DBD reconstruction.
 - We believe that there is still some room for improvement in the IDR... how much?