IDR Report

Y. Okugawa¹ A. Irles² R. Yonamine¹ F. Richard² R. Pöschl²

¹Tohoku University

²Laboratoire de l'Accélérateur Linéaire

April 20, 2019

- $b\bar{b}$ and $t\bar{t}$ polar angle distribution.
- Calculation of A_{fb} value.
- Calculation of final and partial efficiency.
- Vertex Restorer performance comparison.
- dEdx distribution and kaon identification.
- α and d0 value adaptation to the new definition.
- purity calculation (investigation on purity loss)
- tau isolated lepton efficiency loss.

- $b\bar{b}$ and $t\bar{t}$ polar angle distribution.
- Calculation of A_{fb} value.
- Calculation of final and partial efficiency.
- Vertex Restorer performance comparison.
- dEdx distribution and kaon identification.
- α and d0 value adaptation to the new definition.
- purity calculation (investigation on purity loss)
- tau isolated lepton efficiency loss.

- $b\bar{b}$ and $t\bar{t}$ polar angle distribution.
- Calculation of A_{fb} value.
- Calculation of final and partial efficiency.
- Vertex Restorer performance comparison.
- dEdx distribution and kaon identification.
- α and d0 value adaptation to the new definition.
- purity calculation (investigation on purity loss)
- tau isolated lepton efficiency loss.

- $b\bar{b}$ and $t\bar{t}$ polar angle distribution.
- Calculation of A_{fb} value.
- Calculation of final and partial efficiency.
- Vertex Restorer performance comparison.
- dEdx distribution and kaon identification.
- α and d0 value adaptation to the new definition.
- purity calculation (investigation on purity loss)
- tau isolated lepton efficiency loss.

- $b\bar{b}$ and $t\bar{t}$ polar angle distribution.
- Calculation of A_{fb} value.
- Calculation of final and partial efficiency.
- Vertex Restorer performance comparison.
- dEdx distribution and kaon identification.
- α and d0 value adaptation to the new definition.
- purity calculation (investigation on purity loss)
- tau isolated lepton efficiency loss.

- $b\bar{b}$ and $t\bar{t}$ polar angle distribution.
- Calculation of A_{fb} value.
- Calculation of final and partial efficiency.
- Vertex Restorer performance comparison.
- dEdx distribution and kaon identification.
- α and d0 value adaptation to the new definition.
- purity calculation (investigation on purity loss)
- tau isolated lepton efficiency loss.

Progress for $t\bar{t}$ analysis so far:

- $b\bar{b}$ and $t\bar{t}$ polar angle distribution.
- Calculation of A_{fb} value.
- Calculation of final and partial efficiency.
- Vertex Restorer performance comparison.
- dEdx distribution and kaon identification.
- α and d0 value adaptation to the new definition.
- purity calculation (investigation on purity loss)

• tau isolated lepton efficiency loss.

- $b\bar{b}$ and $t\bar{t}$ polar angle distribution.
- Calculation of A_{fb} value.
- Calculation of final and partial efficiency.
- Vertex Restorer performance comparison.
- dEdx distribution and kaon identification.
- α and d0 value adaptation to the new definition.
- purity calculation (investigation on purity loss)
- tau isolated lepton efficiency loss.

Environment

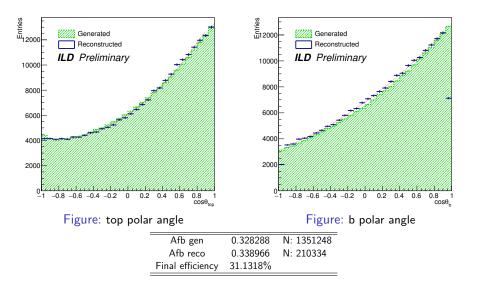
Setting

- ILCSoft v02-00-02
- Used yyxylv and yyxyev events (eliminated isolated tau)
- Polarization of eLpR is used.

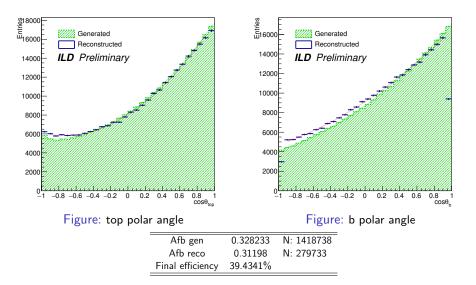
Deviation from DBD

- Usage of Isolated Lepton Tagger instead of LAL Lepton Finder.
 - Isolated Lepton Tagger focuses on electron and muon ID, eliminating tau through the process.
 - Individual final efficiencies for electron, muon and tau are 28%, 31%, 4%, respectively.
- Definition of Z_0 and D_0 has been changed due to vertex smearing.

Basic selection cuts:¹


- Lepton cut: Iso.Lep. > 5 GeV
- Hadronic mass: 180 < M_{Had} < 420
- *btag*1 > 0.8 or *btag*2 > 0.3
- Thrust: *thrust* < 0.9
- Top1 mass: $120 < m_{t1} < 270$
- W1 mass: 50 < m_{W1} < 250

Lorentz Gamma cuts:

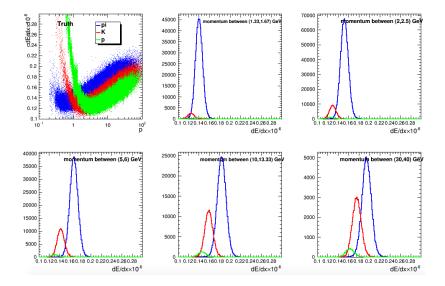

- $\gamma_t^{had} + \gamma_t^{lep} > 2.4$ • $\gamma_t^{lep} < 2.0$
- b-quark Momentum cuts:
 - $|p|_{had} > 15 \text{ GeV}$

¹Main distinct algorithm to distinguish top and anti-top.

Polar Angle Distribution (I5)

Polar Angle Distribution (s5)

Basic Selection Efficiencies


Large Detector

nEvents	697476	(100.%)
after lepton cuts	645418	(92.5%)
after btag cuts (0.8 & 0.3)	569699	(81.7%)
after thrust cut	569699	(81.7%)
after hadronic mass cut	549885	(78.8%)
after reco T & W mass cut	516152	(74.0%)

Small Detector

nEvents	732456	(100.%)
after lepton cuts	677523	(92.5%)
after btag cuts (0.8 & 0.3)	604902	(82.6%)
after thrust cut	604902	(82.6%)
after hadronic mass cut	584523	(79.8%)
after reco T & W mass cut	548214	(74.8%)

dEdx Distribution

IDR Report

Okugawa (Tohoku U)

Efficiency and p-value

Calculation of p and q values

$$\left. \begin{array}{l} N_{acc} = Np^2 + Nq^2 \\ N_{rej} = 2Npq \\ 1 = p + q \end{array} \right\} \quad N_{corr} = N_{acc} \cdot \frac{p^2}{p^2 + q^2}$$

where N is total number of events, N_{acc} and N_{rej} are number of events that were accepted and rejected, respectively. p and q values represents probabilities of events being accepted and rejected.

Solving this equation will give us back both p and q, thus improving our results on A_{fb} .

Efficiency and p-value

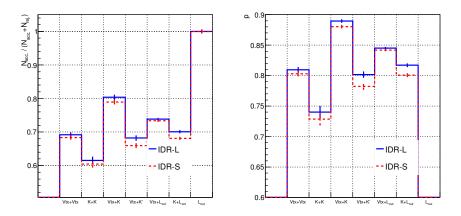


Figure: p for correct charge selection and its fractions on number of events.

Efficiency and p-value

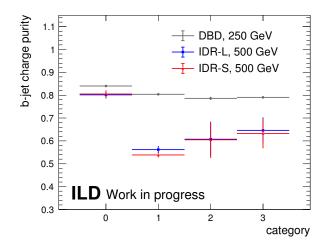
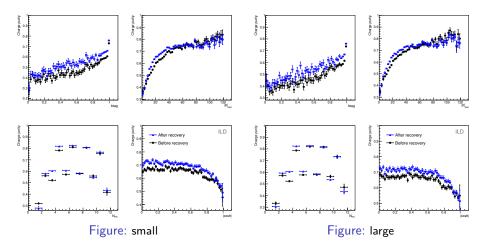
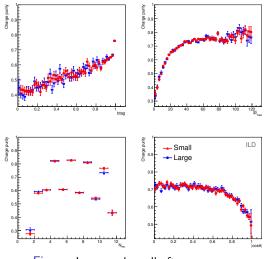
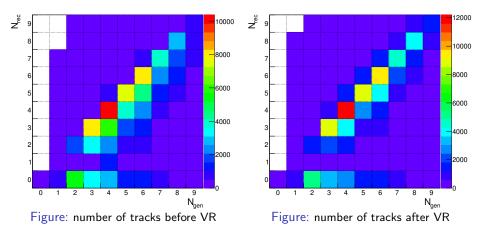
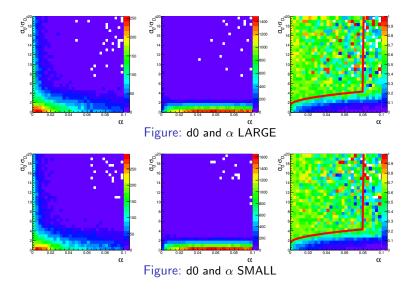



Figure: p for correct charge selection for DBD bbar (from Adrian's slide).

Charge Purity Distribution (Small and Large)

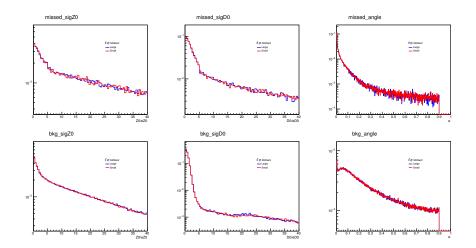
Charge Purity Distribution (Small and Large)

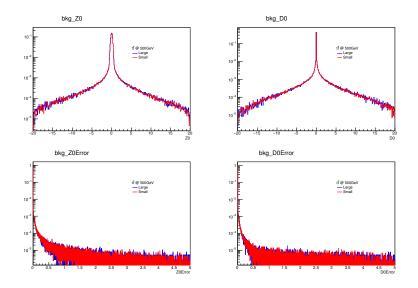




Figure: Large and small after recovery

Okugawa (Tohoku U)

Track Distribution (Large)


d0 and α


Okugawa (Tohoku U)

IDR Report

Missed and Background D0 and Z0

Missed and Background D0 and Z0

Summary

Prospects and IDR

- IDR benchmark study for $t\bar{t}$ is pretty much **DONE**.
- Writing up a draft of IDR by the end of next week might be ideal.
- Roman, Victor, Ryo and I will work on hadronic channel simultaneously.

Summary

Prospects and IDR

- IDR benchmark study for $t\bar{t}$ is pretty much **DONE**.
- Writing up a draft of IDR by the end of next week might be ideal.
- Roman, Victor, Ryo and I will work on hadronic channel simultaneously.

Summary

Prospects and IDR

- IDR benchmark study for $t\bar{t}$ is pretty much **DONE**.
- Writing up a draft of IDR by the end of next week might be ideal.
- Roman, Victor, Ryo and I will work on hadronic channel simultaneously.