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Instrumentation challenges for the next decade

• The citius-altius-fortius challenge

• The ultimate-resolution, highest-efficiency challenge

• The complexity or system challenge
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Citius, altius, fortius

• Ever more pixels/strips and ever larger detector area
~ billion silicon pixels and hundreds of m2

• Pixel number, resolution and frame rate all increase
10 – 1000 million pixels

1 – 14 bit resolution

kHz – GHz frame rates

• Need to zero-suppress, compress, filter and process these data on and off the detector
 smart ASICs on detector

 capable data transmission of >> Tb/s

 powerfull trigger, data processing, visualisation and management systems

CMS inner tracker for high-luminosity upgrade

Highflex board version 1

imply data streams of up to 100 Terabits/s
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So far commercial nanoelectronics has been working for us

Laws of Moore

http://www.nature.com/nphoton/journal/v7/n5/full/nphoton.2013.94.html

• Exponential progress with time

• Processor transistor count: 4x every 3 years

• Memory size: 2x every 3 years

• Single fiber bandwidth: 10x every 4 years
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Selected topics in detector instrumentation

Monolithic sensors 

DAQ and triggering Silicon photonics

4D-tracking
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Monolithic sensors

Are the days of hybrid pixel detectors numbered?
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High-voltage CMOS sensors

HV-CMOS: radiation sensor on a microchip in a standard technology

• High voltage offers several advantages. For one fast and large signals

• A large number of designs have been produced for possible 

application at CLIC, COMPASS, HL-ATLAS or Mu3e.

• Different foundries and processes: Global foundries (CMHV7SF), 

AMS (aH18) and TSI

• Excellent particle detection efficiency, radiation tolerance up to 

10 MGy (5x1015 neq/cm2), time resolution ~6 ns (RMS), low cost

• Very complex electronics have been built-in, driven by HL-ATLAS 

specifications

Potential energy (electrons)/e

p-substrate

NMOS

n-well

p-well

PMOS

- 3.3 V

50 V
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Latest design: ATLASPIX3

• Implemented in TSI 180 nm HVCMOS technology             

• Features and data interfaces similar to RD53 pixel chip: L1 triggering tag, 

Aurora 64b66b output, 1.28Gb/s, 32 bit hit words, etc.

• Supports triggered readout with trigger latency up to 25 µs

• Supports serial powering

• Large sensor area of 20.2 x 21 mm2

Chip has just been fabricated and, so far, looks good.

Next TSI run in December will include CLIC  25 x 300 µm2 elongated pixels 

and designs with reduced capacitance
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4-D tracking

The next paradigm change in silicon sensors?
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From 3D to 4D tracking

• At LHC, we can distinguish hundreds of different event vertices, provided they do not overlap

• Just imagine we could precisely measure time as well!

• Timing would allow much better separation of overlapping events and offer great physics 

benefits

beamline (z)
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4D tracking would also revolutionize track fitting

Can this be realized? 
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CMS MIP timing detector (MTD)

The concept and technology for picosecond timing at HL-LHC came rather late. But it is so 

powerful that it will be implemented (see CMS-TDR-029)

• A timing layer will be placed between outer tracker and calorimeter

• In the barrel, the timing layer will be scintillating crystals and silicon photomultipliers

• For the end caps, it will be LGADs  (~14 m2 area, ~6 million pixels, pixels size: ~ 1 mm2) 

• Radiation levels are rather high in the end caps:  

~2 x 1015 neq/cm2. So resolution may deteriorate to 

~50 ps with time 

Ironically, this vertex detector is placed at 3 m distance 

from collision point

Endcap timing layer at 

nose of calorimeters 
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A fast timing system

• Need to consider interplay of sensor, pre-amplifier and TDC for picosecond timing

Pre-amplifier Time to digital converter Sensor 
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LGAD: Low-Gain Avalanche Detector

LGAD have the potential of replacing standard silicon sensors in almost every application

• Gain of LGADs is ~ 10 - 20

• Jitter of 50 µm thin sensors is tens of ps only

• Need thin sensor to reduce drift times and maximize the slew rate (dV/dt)

• Need internal charge amplification for fast and large signals 

• Need high-field (in gain region) to maximize drift velocity 

• (small capacity and leakage current)

Traditional silicon detector 

~ 1016 Nd/cm3 

n++ 

p+ 

p 

p++ 

Low gain avalanche detectors 

n-in-p 

n++ 

p 

p++ 
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Traditional silicon detector Low gain avalanche detectors 
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Trench isolation of pixels

No gain area

p-stop design

Traditional sensors (2 pixels) 

n-in-p

n++

p

p++

Trench design

• For LGAD isolation of pixels at full gain is 

challenging.

• Smaller pixel sizes at large fill factor are attractive

• A promising approach is trench isolation
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Fast monolithic pixel sensors in 130 nm SiGe

• Excellent time resolution can also been achieved without internal gain by minimizing 

pixel capacitance  

see G. Iacobucci et al. in arXiv:1908.09709v1 [physics.ins-det] 26 Aug 2019

Monolithic timing sensor in 130 nm 

SiGe technology by IHP

~ 50 ps
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Conclusion: monolithic and 4D sensors

• There is a plethora of sophisticated novel silicon sensor variants

• Monolithic charged particle sensors are around for a while now, and monolithic sensors with 

superb performance are being used in heavy-ion experiments

• Depleted monolithic sensors (e.g. HV-CMOS) missed application in HL-ATLAS by a smidgen

• (Depleted) monolithic sensors are likely to become dominant for future colliders. They are also 

interesting for outer tracker layers and calorimetry

• But, “Never underestimate an old technology”

• Hybrid silicon sensors will remain with us for a while, in particular in harsh environments

• The potential of 4D sensors is huge. Much scope for more R&D on sensors and systems
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Silicon photonics

The future of data transmission? 
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Optical data transmission today

• Optical data transmission as implemented in LHC experiments is very powerful

• 15000 optical fibers for CMS tracker, ≤ 5 Gb/s per fiber

• Only a fraction of detector raw data is read out

• Radiation hardness of on-detector lasers is critical

LHC solutions differ from standard telecommunication and use on-off keying and 

laser diodes (VECSELs) on the detector
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Read out ALL data?

• Lasers located off detector

• Efficient and radiation-hard electro-optical modulators

• Fewer fibers and much higher bandwidth due to wavelength division multiplexing (WDM) 

• Silicon photonics for affordable photonic chips and CMOS compatibility
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A silicon photonics data transmission architecture

Telecom off-the-shelf components:

WDM-(de-)-multiplexers

lasers + drivers

optical receivers

Custom-built:

modulator driver

monolithic WDM

photonic circuits
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Silicon photonic modulators: Mach-Zehnder interferometer

pn-phase shifters

Mach-Zehnder modulator

phase shifter
splitter

constructive or 

destructive 

interference

combiner

cw light modulated light

electrical input

electrical input

phase shifter

optical wave
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Wavelength multiplexers and de-multiplexers

Planar concave gratings, Échelle gratings

optical coupler
waveguide

diffraction grating

optical fiber

free-space region

45-channel (De-)MUX

Rowland-circle method
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Silicon photonic chips

2013

2015

2018

2018

2014 11.3 Gb/s per channel data

transmission

7-channel (De-)MUX

• All silicon modulators

• Many functional designs

• Innovative features

• Monolithically integrated, compact WDM 

systems

2018

2.4  4.9 mm²

10  10 mm²

9.3  9.3 mm²

12  13 mm²

8.4  7.3 mm²

two-stigmatic-points method
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• 40 Gb/s demonstrator near completion

• 1 year: 160 Gb/s per fiber

• 5 years: >>1 Tb/s per fiber     with 64 channels à 20-40 Gbaud

and 2 bits per symbol

• Fully integrated systems will be 

compact

R&D status and milestones

fiber-chip-coupling 

with angle-polished fibers

miniaturized drivers
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Conclusion: Data transmission

• Silicon is not a great optical material and optical connectors are a pain 

• Electric connections still dominate short distances inside a chip, along a 

silicon stave or within an electronic crate

• Silicon photonics in detector instrumentation is in its infancy 

• However:  silicon photonics could enable mind-boggling possibilities like powerful 

interconnections between detector layers, the trigger-less detector and, of course,  

reduce power consumption and material 

• We will need another 5 years to be sure, but less than a decade to instrument a linear collider

caveats
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DAQ and triggering
in high-energy physics
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CMS in the HL-LHC era

• Almost 15 000 modules and 300 

million channels in outer tracker 

• ~12 000 hits every 25 ns 

• 1 000 hits (stubs) after first filtering in 

detector modules 

• Data rate: ~100 Tbit/s 

• 12.5 µs time limit for first level trigger 

decision (4 µs for track finding) 

• Readout is highly complex 

Event at HL-LHC
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Divide and conquer

Time-multiplexing

• Work on each event in parallel 

• Each node processes „full“ detector (region)

• 18 – 24 time multiplexing periods

Colors indicate 

bunch crossing

Spatial partitioning

• Separate detector into sectors

• Duplicate tracks at sector boundaries

• 9 sectors in φ

Partitioning in φ Partitioning in η
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System architecture

2 FPGA layers

• Data distribution layer (DTC)

• 9 regions (nonants)

• 24 FPGA boards per region

• Track finding and fitting (TFP)

• 18 time periods per region

• 18 FPGA boards per region

Huge optical data transmission layer 

• Each DTC connected with up to 72 modules

• 23 400 optical links @ 10 Gb/s

• Each TFP connected with up to 48 DTCs

• 10 368 optical links @ 25 Gb/s

• DAQ links

• 864 DAQ links @ 25 Gb/s

1st 

processing

layer

2nd 

processing

layer

Optical 

interconnects

216 boards

162 boards

234 Tb/s

260 Tb/s

21.6 Tb/s
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DTC prototype board: EureKA-Maru ATCA blade 

• High-end FPGA Xilinx Virtex Ultrascale 9 Plus

• 2.6 million logic cells

• 6840 DSP slices

• 345.9 Mb on chip memory

• 120 x 32.72 Gb/s transceivers

 ~ 4 Tb/s input/ouput capability

• Integrated IPMC & slow control solution based on 

Xilinx Zynq Ultrascale+ 

• 116 high-speed links through Firefly (25 Gb/s max.)
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System architecture

2 FPGA layers

• Data distribution layer (DTC)
9 regions (nonants) with 24 FPGA 

boards each

• Track finding and fitting (TFP)
18 time periods and 18 FPGA 

boards per region

Huge optical data transmission layer 

• Each DTC connected with up to 72 modules
15 552 optical links @ 5/10 Gb/s

• Each TFP connected with up to 48 DTCs
7 776 optical links @ 25 Gb/s

• DAQ links
864 DAQ links @ 25 Gb/s

1st 

processing

layer

2nd 

processing

layer

Optical 

interconnects

216 boards

162 boards

156 Tb/s

194 Tb/s

21.6 Tb/s
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A new class of devices

Invented 1985 

(XC2064)

SoC (Virtex-4, 2005)

FPGA @ 300 MHz FMAX +
450 MHz PowerPC processor

RFSoC (Zynq US+, 2018)

1.5 GHz Quad-core ARM processor +

890 MHz FMAX (all register used) +
Radio frequency front-end (analog)

VERSAL architecture

FPGA based on 7 nm TSMC (FinFET) +

Multi-core processors +

Radio frequency front-end (analog) +
Artificial intelligent & complex signal

processing (hard-core)

MPSoC Zynq, 2014

1 GHz Dual-core ARM processor +
FPGA @ 740 MHz FMAX

MPSoC Zynq US+, 2016

1.5 GHz Quad-core ARM processor +
FPGA @ 890 MHz FMAX

FPGA
SoC

MPSoC

RFSoC

ACAP
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Versal - architecture overview

Latest Xilinx architecture

• More heterogeneous

• More complex

Key Features

• FPGAs + Processors + artificial intelligence engines

• Network on Chip backbone

 high bandwidth & low latency

 guaranteed QoS

 memory mapped 

 built in arbitration

• Complex memory hierarchy
(LUTRAM, BRAM, UltraRAM, Accelerator RAM, HBM, DDR)

Adaptive compute 

acceleration platform 

(ACAP)

Scalar processors

+ real time 

Adaptable 

Engines (FPGA)

Vector processors 

AI + DSP Engines

https://www.xilinx.com/support/documentation/

white_papers/wp505-versal-acap.pdf
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Heterogeneous DAQ systems

Data

Off-detector 

ATCA/µTCA readout cards

HPC 
GPU Server 

CMS tracker system

(Phase II – Update)

Trigger
Control

…
…

…

Local data concentrator

and event builder 

High Level trigger 

and event display

ATCA/µTCA crates

…
…
…
.

HLT
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High-performance heterogeneous FPGA-GPU

Reconstruction and semi-
automatic segmentation by GPUs

GPUs cluster

Hough space on GPU 

CMS low-level trigger system 

based on FPGA-GPUs 

track reconstruction and fitting

CMS low-level trigger system 

L1 trigger will require reconstruction of charged 
particles with transverse momentum > ~2 GeV/c

Total data latency of 6.9 µs = 

2 µs (data transfer) + 4.9 µs 

(GPU processing)

H. Mohr et al., JINST 12 C04019 

(2017)

GPU Features

Rapid development cycles and high 

flexibility

Large bandwidth to external memory

High Floating-Point performance

FPGA Features

Huge I/O bandwidth

Deterministic timing/runtimes

High bit-level processing performance
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Conclusion: DAQ in high-energy physics

• Handling of big data in real-time is possible: CMS track trigger with ~100 Tb/s in 4 µs latency

• Highly sophisticated parallel implementation on hundreds of custom FPGA  boards required

• Progress in commercial microelectronics (FPGAs, transceivers, etc.) will still support us for 

some time

• However, architecture choices and algorithms are becoming dominant. This includes real-time 

deep learning 

• The combination of FPGA - GPU systems is extremely powerful 

• Data processing will turn online data analysis
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Summary

Monolithic sensors 

DAQ and triggering Silicon photonics

4D-tracking

Many thanks to:

M. Caselle, A. Dierlamm, 

I. Peric, O. Sander, 

M. Schneider (KIT); 

G. Hall et al. 

(Imperial College);  

N. Cartiglia (INFN Torino) 
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Appendix
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Pixel structure
• Pixels are based on floating electronics structure – pixel electronics is placed into a deep n-well.

• Deep-n-well fulfills two tasks: 

1. Local substrate for electronics (isolated from p-substrate)

2. Charge collecting electrode.

• The p-substrate region below the deep n-well is depleted by setting substrate to negative HV. Typical depletion depth: 30 –

50µm for 80  to 200 Ωcm resistivity. MIP signals are typically >5000e for 200 Ωcm substrate

• The substrate contacts are at the chip surface (undepleted parts of it)

• Largest capacitance from p-well/n-well junction

NMOS PMOS

P-type substrate

Depleted zone

Deep n-well

n-wellp-well

HV NMOS PMOS

P-type substrate

Depleted zone

Deep n-well

n-wellp-well

HV

Deep p-well

Standard process
Modified process

deep p-well


