

Summary of FONT beam stabilisation results at ATF

R. Ramjiawan, D.R. Bett, P.N. Burrows, C. Perry. FONT, John Adams Institute, University of Oxford

LCWS 2019, Sendai

Tuesday, 29th October 2019

• 2-BPM feedback

• 1-BPM feedback

Results of feedback studies

Introduction to the ATF2

Results of IP BPM resolution studies

Best BPM resolution results

Method of resolution estimation

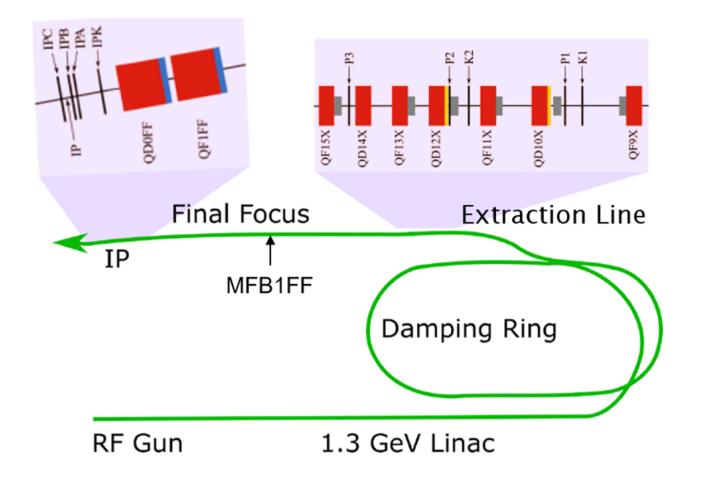
• (Feedback On Nanosecond Timescales) FONT system

• Performance of a stripline BPM feedback system

Intra-train, dual-phase upstream feedback system

Summary

Background



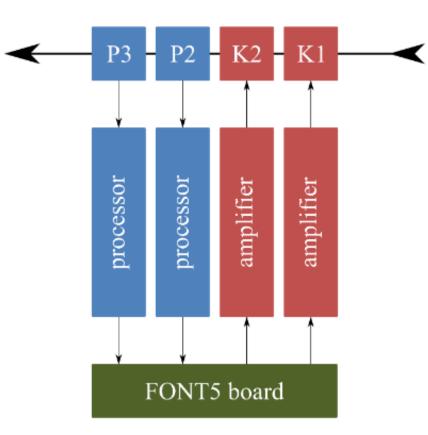
Accelerator Test Facility

4 G. White et al., Phys. Rev. ST Accel. Beams, vol. 112, p.034802, (2014)

Accelerator Test Facility

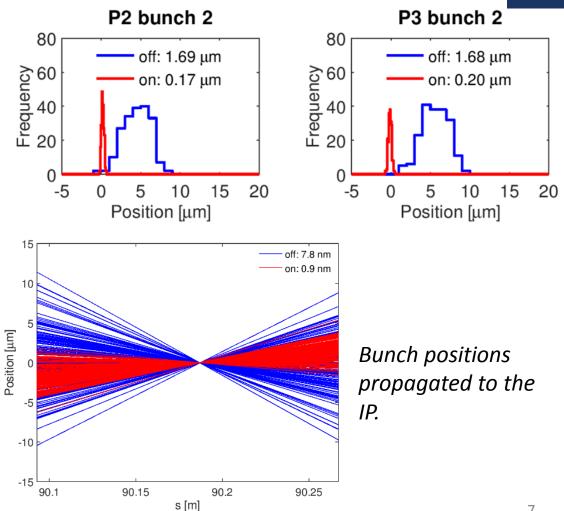
- The Accelerator Test Facility (ATF2) at KEK develops technology and techniques needed for future linear colliders.
- The ATF2 has a low emittance beam and a final focus which is a prototype for the ILC and CLIC. The facility has two primary goals:
 - Goal 1: Small beam size (37 nm)
 - Goal 2: Beam stabilisation (nm-level)
- Typically configured for trains of two bunches with 280 ns separation as this gives high bunch-to-bunch position correlation.
- FONT have extraction line and IP feedback systems.

Rebecca Ramjiawan



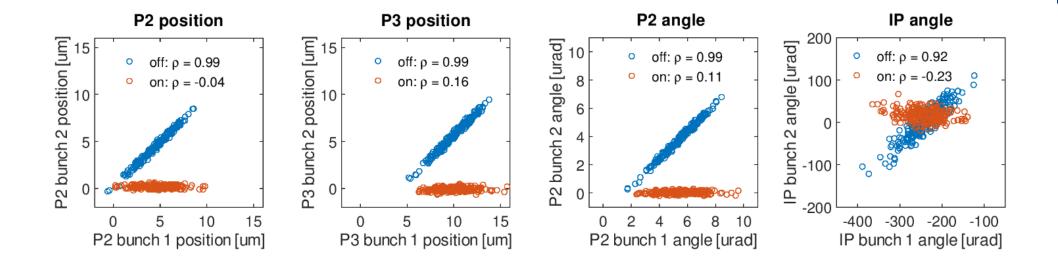
Extraction-line feedback system

Extraction-line feedback system

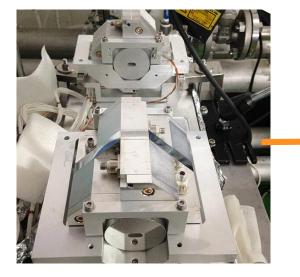

- The beam position is measured using two 12 cm stripline BPMs (P2 and P3).
- Low-latency processing electronics allow for a bunch calculation to be determined on the timescale of the bunch spacing (150 – 300 ns).
- Difference (Δ) and sum (Σ) signals are combined to produce signal $\frac{\Delta}{\Sigma}$, which is proportional to the transverse bunch offset.
- The bunch position correction is then applied by stripline kickers K1 and K2.
- Recent upgrades to the BPMs have increased the single-shot, real-time position resolution of the system to ~150 nm for a beam charge of 1.3 nC.

29/10/2019

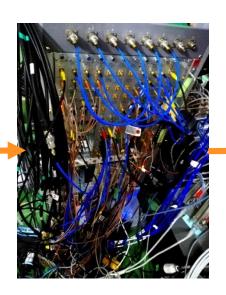
Feedback results


- Intra-train feedback was performed on trains ٠ of two bunches separated by 274.4 ns.
- Feedback was operated in an interleaved mode to allow for a direct comparison between feedback off and on.
- Feedback achieved **position** stabilisation from:
 - $1.69 \pm 0.09 \,\mu\text{m}$ to $165 \pm 8 \,\text{nm}$ at P2.
 - $1.68 \pm 0.08 \,\mu\text{m}$ to $200 \pm 10 \,\text{nm}$ at P3.
- Using a model of the ATF2 beamline, transfer matrices can be calculated in order to infer the stabilisation at the IP of:
 - 7.8 \pm 0.4 nm to 0.86 \pm 0.04 nm
 - Factor of 3 reduction in the angle jitter when propagated to the IP.

Bunch-to-bunch position correlation



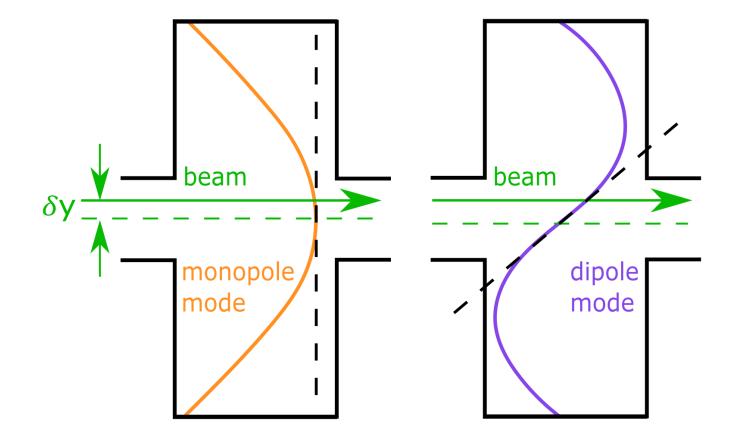
- The plots above show the bunch-2 positions plotted against the bunch-1 positions with feedback off and on, demonstrating a reduction in the correlation from ~99% to close to 0%.
- The feedback system also achieved **angle** stabilisation between P2 and P3 from:
 - 1.26 \pm 0.06 µrad to 107 \pm 5 nrad.


IP feedback system

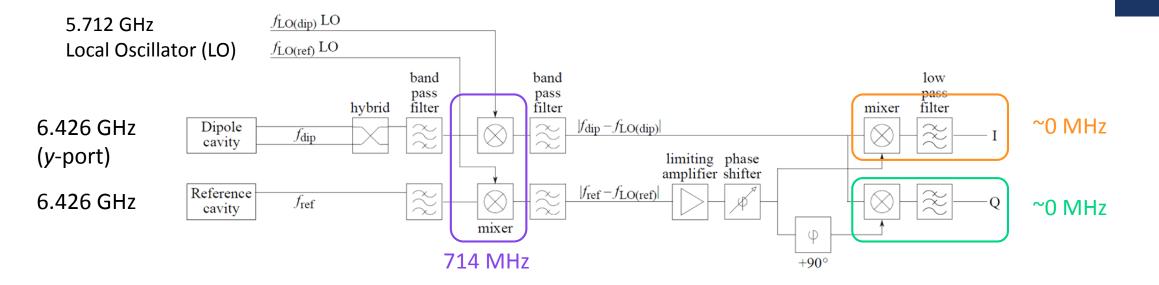
FONT IP Feedback System

- C-band cavity Beam Position Monitors - IPA, IPB and IPC.
- All with decay times between 20 and 25 ns.
- Mounted on piezo-mover systems to allow for alignment of BPMs with beam in *x, y* and also to adjust the pitch.

- Two-stage processing electronics: down-mix and process cavity signals. Produces two signals at
- Produces two signals at baseband: I and Q which contain beam position and angle information.
- FONT 5A digital board with Virtex-5 Field Programmable Gate Array (FPGA).
- ADCs to digitise I and Q waveforms at 357 MHz.
- DACs to provide analogue output to drive kicker.



- Stripline kicker and specialised amplifier (provided by TMD Technologies Ltd) used to provide feedback correction.
- Amplifier provides ±30 A of current to drive the kicker, with a fast rise time of 35 ns to reach 90% of peak output.


•

BPM Signal Processing

- Separate cavities for the extraction of the monopole and dipole modes.
- The extracted monopole mode has to first order only charge dependence.
- The extracted dipole mode has charge and position dependence.
- These high-frequency signals need down-mixing and mixing to produce a baseband signal proportional to only the bunch offset.

BPM Signal Processing

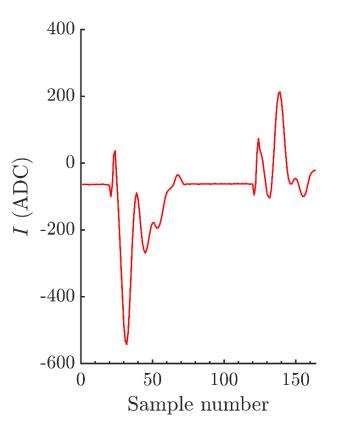
<u>1st stage processing electronics – downmix to 714 MHz</u>

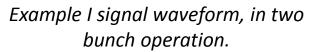
Dipole cavity signal: 6.4 GHz signal dependent on vertical position and charge, is frequency down-mixed using an LO at 5.7 GHz.

Reference cavity signal: charge dependent, 6.4 GHz signal is frequency down-mixed using the same LO at 5.7 GHz.

2nd stage processing electronics – downmix to baseband

Down-mixed dipole and reference signals at 714 MHz are mixed in-phase to produce the baseband *I* signal. They are mixed in-quadrature to produce the baseband *Q* signal.


Sample integration



- **Single sample**: only a single sample of each of the *I* and *Q* waveforms are used.
- **Sample integration**: integration over a multisample window is used (up to 15 samples).
- System latency of **230 ns** when integrating 15 samples.
- The *I* and *Q* signals are charge normalised and combined to produce a position signal:

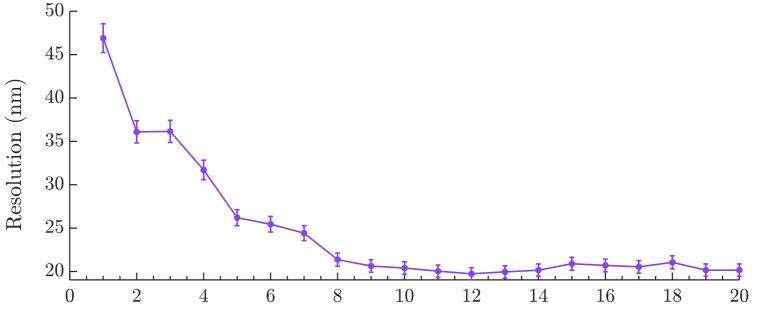
$$y = \frac{1}{k} \left(\frac{l}{q} \cos \theta_{IQ} + \frac{Q}{q} \sin \theta_{IQ} \right),$$

where k and θ_{IQ} are determined through calibration.

BPM Resolution

Calculating the Resolution

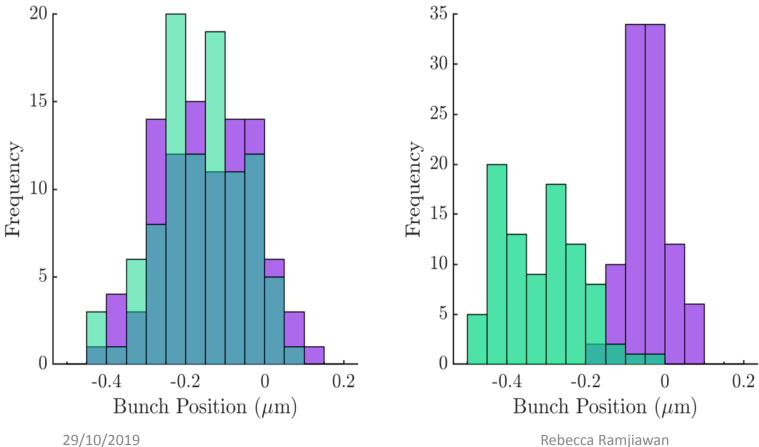
- The known beam transport through the three BPMs means the position at any BPM can be **predicted** using the positions of the beam at the other two BPMs.
- Bunch position is both predicted and measured at a BPM, the difference between the two is the residual which is calculated for many consecutive triggers. The resolution is defined as the standard deviation of the residuals.


residual = $y_{pred} - y_{meas}$

BPM resolution

- Resolution improves by more than a factor of two using sample integration.
- Estimations of the resolution with sample integration are more stable and consistent between data sets as single-sample fluctuations are averaged over.
- Resolution of ~20 nm can be reproducibly achieved with integration.

Number of samples in integration window


	Single-sample	11-sample
Resolution	46.9 ± 1.7 nm	19.0 ± 0.4 nm

Feedback results

29/10/2019

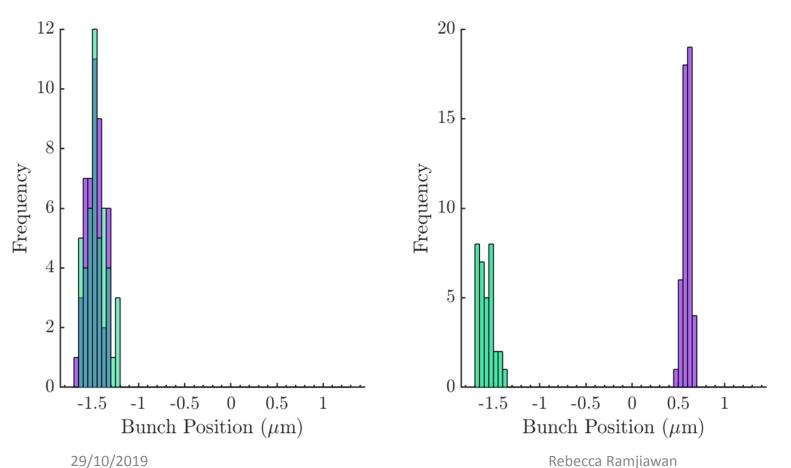
1-BPM Feedback Results

Best results demonstrated for 1-BPM feedback mode with stabilisation at IPC.

BunchFeedback offFeedback1 109 ± 11 118 ± 12 2 119 ± 12 50 ± 4	Position jitter (nm)			
	ack on	Feed	Feedback off	Bunch
2 119 + 12 50 + 4	± 8	118	109 ± 11	1
	± 4	(50)	119 ± 12	2

Ten-sample integration window.

- Feedback off correlation: 84%
- Feedback on correlation: -26%


Stabilisation below 55 nm was reproducible.

Shows significant improvement over single-sample performance: 74 nm.

2-BPM Feedback Results

Best results demonstrated for 2-BPM feedback mode, with stabilisation at IPB.

		Position jitter (nm)	
	Bunch	Feedback off	Feedback on
	1	106 ± 16	106 ± 16
$2 96 \pm 10 (41 \pm 4)$	2	96 ± 10	(41 ± 4)

Five-sample integration window.

- Feedback off correlation: 92%
- Feedback on correlation: 41%

The correlation is not fully removed feedback gain set too low; higher gain may offer better performance (up to **25 nm**).

Shows significant improvement over single-sample performance: 57 nm.

- Low-latency dual-phase feedback was performed using the upstream system demonstrating local stabilisation to ~200 nm.
- Improvements to the IP feedback firmware allow for the use of an integrated period of the BPM waveform. Integration is shown to improve the useable BPM resolution from ~45 nm to ~20 nm.
- This was tested with two different feedback modes:
 - 1-BPM feedback showed stabilisation to 50 ± 4 nm.
 - 2-BPM feedback showed stabilisation to 41 ± 4 nm.
 - Both of these results show a significant improvement over the best feedback performance with single-sample operation.

Thank you for listening