

Nonlinear optimization of the Ultra-low $(25\beta_x^* \times 0.25\beta_Y^*)$ optics. LCWS 2019, Sendai

Andrii Pastushenko, Renjun Yang, Rogelio Tomás

October 29, 2019

Octupoles setup optimization

- Octupoles setup at ATF2
- Swapped setup check
- Tuning with octupoles

2 Linear and Nonlinear knobs for $25\beta_x^* \times 0.25\beta_y^*$ optics.

- Tuning knobs construction
- Beam size tuning comparison

Summary

• Ultra-low β_y^* optics for ATF2 is aimed to test the Final Focus System at chromaticity level similar to one at CLIC.

OCT1FF

OCT2FF

- Past studies on Ultra-low β_y^* tunability showed that higher β_x^* and a pair of Octupoles are needed: to compensate the **fringe fields** and the **higher order aberrations**.
- 2 Octupoles (OCT1FF and OCT2FF) were installed in 2017.

• Strengths of the octupoles were optimized to be used with several Ultra-low lattices¹:

	$1eta_x^* imes 0.25eta_Y^*$	$10eta_x^* imes 0.25eta_Y^*$	$25eta_x^* imes 0.25eta_Y^*$
OCT1FF k ₃ L [m ⁻³]	-36.6	-24.1	-90
OCT2FF k ₃ L [m ⁻³]	191.4	98	1770

- All the optics were tested in the simulations and at ATF2.
- The best tuning performance is expected for $25\beta_x^*\times 0.25\beta_Y^*$ (used as the main Ultra-low lattice).

According to the octupoles specification:

	k ₃ ^L [m⁻³], limit@50A
OCT1FF	730
OCT2FF	90

Limits the maximum yield, since k_3 of OCT2FF >> limit.

Although such a setup for $25\beta_x^* \times 0.25\beta_Y^*$ was expected to be very challenging to use, it was decided to keep it to examine for the possible corrections of the **multipolar errors**².

 $^{^{1}}$ F. Plassard, "Optics optimization of longer L^{*} Beam Delivery System designs for CLIC and tuning of the ATF2 final focus system at ultra-low β_{y}^{*} using octupoles".

²M. Patecki et al, "ATF2 tuning simulations versus observations for half β_v^* optics".

Swapped octupoles setup

- Design vertical beam size for $25\beta_x^* \times 0.25\beta_Y^*$ optics is **17.7 nm**. It requires a much stronger **OCT2FF**.
- Given the required octupoles strengths it was suggested to swap **OCT1FF** and **OCT2FF** and examine such a setup.

While it is not possible to retrieve the design beam size, swapping octupoles can give the measurable beam size reduction.

• Current setup:

The smallest beam size we can get is \sim 34.2 nm, which is almost the same as without the octupoles. Practically, σ_y^* reduction cannot be seen with IPBSM.

• Swapped setup: The smallest beam size we can get is 25.9 nm (stronger magnet at 50 A and the weaker one at \sim 33 A), which ideally gives a reduction of 10 nm.

Simulations setup:

- 260 machines simulated with randomly distributed static errors³.
- Orbit and dispersion correction, sextupoles and OCT2 BBA, beam size tuning with linear/nonlinear knobs.
- Strength of OCT2 is scanned based on the beam size with IPBSM@174 deg.

RMS value of the beam size reduction is 4.2~nm with $\sim 30\%$ of the machines reaching the beam size < 30~nm.

³T. Okugi et al, "Linear and second order optics corrections for the KEK Accelerator Test Facility final focus beam line".

Some comments regarding the octupoles alignment:

- From the past experience, we know that it is not possible to align the weaker octupole.
- Stronger octupole, currently, is at OCT1 position and can be aligned with IPBPMs (practically, it is hard to perform).
- In June operation we also tried to align the **OCT1** by scanning the modulation.
- Putting the stronger octupoles at **OCT2** position allows us to use the downstream BPMs for the BBA.

Linear and Nonlinear knobs for $25\beta_x^*\times 0.25\beta_Y^*$ optics.

Tuning knobs are constructed in the way to correct each particular aberration independently.

• Linear knob:

$$R_{3i}^{knob} = \frac{\langle y, u^i \rangle}{\sigma_y \sigma_{u^i}}$$

Constructed **AX**, **AY**, **EX**, **EY**, **Coup**⁴.

Nonlinear knob:

$$T^{knob}_{3ij} = rac{\langle y, u^i, u^j
angle}{\sigma_y \sigma_{u^i} \sigma_{u^j}} \equiv Y_{ij}$$

Constructed Y_{24} , Y_{46} , Y_{22} , Y_{26} , Y_{44} , Y_{66}^5 .

Calculations were done in Python with MadX and MAPCLASS.

 ${}^{5}Y_{24} - \langle y, y', x' \rangle$ term, $Y_{46} - \langle y, y', \delta \rangle$ term: normal sextupoles;

 $\mathbf{Y_{22}} - \langle y, x', x' \rangle \text{ term, } \mathbf{Y_{26}} - \langle y, x', \delta \rangle \text{ term, } \mathbf{Y_{44}} - \langle y, y', y' \rangle \text{ term, } \mathbf{Y_{66}} - \langle y, \delta, \delta \rangle \text{ term: skew sextupoles}$

 $^{^{4}}$ AX - hor. waist shift, AY - vert. waist shift, EX - hor. dispersion, EX - vert. dispersion, Coup₂ - < y, x' > term.

Comparing the beam size tuning with $25\beta_x^* \times 0.25\beta_y^*$ knobs and $10\beta_x^* \times 1\beta_y^*$ knobs.

• Tuning procedure comparison:

Tuning knobs + octupoles:

• Nominal knobs (with nominal sextupole settings) and Ultra-low knobs have the similar performance with mean $\sigma_v^* \sim 30$ nm.

Summary

- Swapped octupoles setup provides the posibility to go below 30 nm vertical beam size, when the beam is well tuned with tuning knobs.
- 47% of the machines end up with $\sigma_v^* <$ 30 nm.
- OCT2 can be aligned with downstream BPMs, while OCT1 should be switched off.

Outlook

• It is expected to test the swapped octupole setup and the new tuning knobs in the next December Ultra-low β_v^* operation.

Thank you very much for your attention!

Back up slides

• OCT1 is off

• OCT1 is on

Beam size was scanned by means of strength iteration of **OCT2** for 2 setups, with **OCT1** on and off. It is clearly seen that **OCT1** should be off.

Quadrupole, Sextupole	Alignment error	100 μm (Gaussian)
	Roll error	200 μ rad (Gaussian)
	Strength error	0.1% (Gaussian)
BBA	Alignment accuracy	\pm 100 μ m (Uniform)
Wire scanner	Measurement error	\pm 800 nm (Uniform)
IP-BSM	Measurement error, 2-8 degree mode	$\pm 100 \ \mu m$ (Uniform)
	Measurement error, 30 degree mode	$\pm 20 \ \mu m$ (Uniform)
	Measurement error, 174 degree mode	\pm 8 μm (Uniform)
BPM	Measurement error	10 μm (Gaussian)

Summary table of the errors considered in the tuning studies:⁶

Tuning sequence:

- Ensure the beam reaches the IP.
- Orbit correction.
- Dispersion correction.
- Wire scanner, linear optics correction.
- Sextupoles are switched on, sextupoles BBA.
- Beam size measurement with IP-BSM and tuning with linear and nonlinear tuning knobs.
- OCT2 alignment and strength scan.

⁶T. Okugi et al, "Linear and second order optics corrections for the KEK Accelerator Test Facility final focus beam line".

Analyzing 3 cases:

- Ultra-low knobs with ultra-low sextupole settings
- Nominal knobs with nominal sextupole settings
- Nominal knobs with ultra-low sextupole settings

