

Achievements and Prospects of Solid-State RF Power Amplifier towards Green Accelerator.

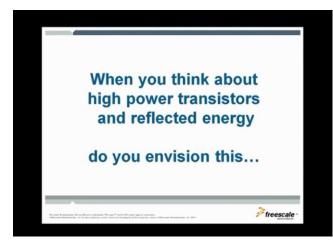
Technology fusion of mobile communication, broadcasting devices, and accelerators.

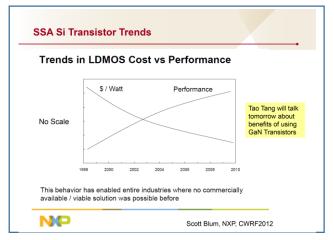
Guide to low-cost, high reliability solution.

October 29, 2019

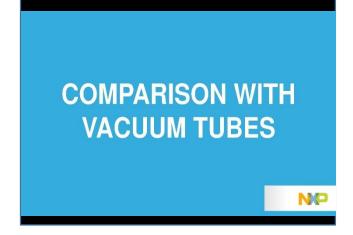
Presented by Riichiro Kobana R&K COMPANY LIMITED - President

R&K Company Limited

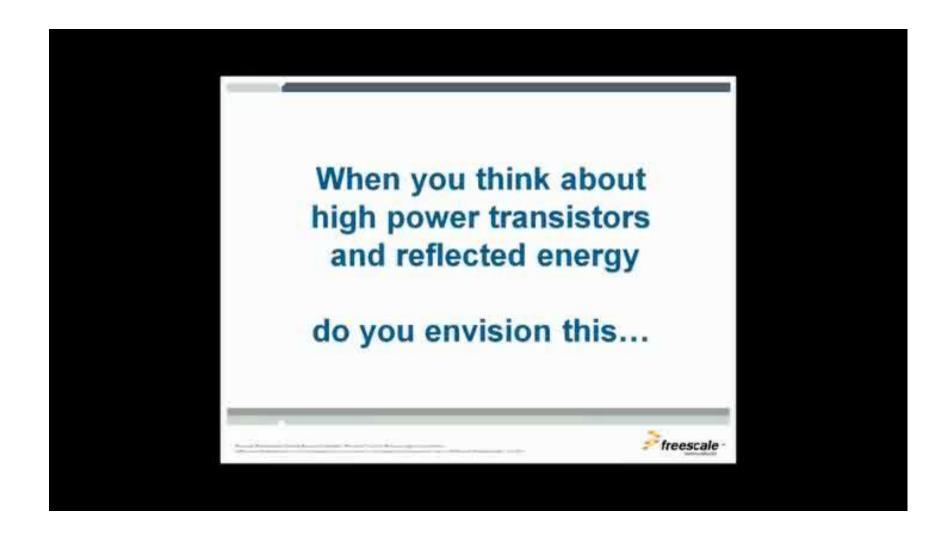

Index


- 1. Evolution of Transistor
- 2. R&K Technical Capability and Strength
- 3. Architectural Change of SSA and Innovation
- 4. Evolution and Completion of Modern Green SSA Application
- 5. R&K Recent Delivery Status

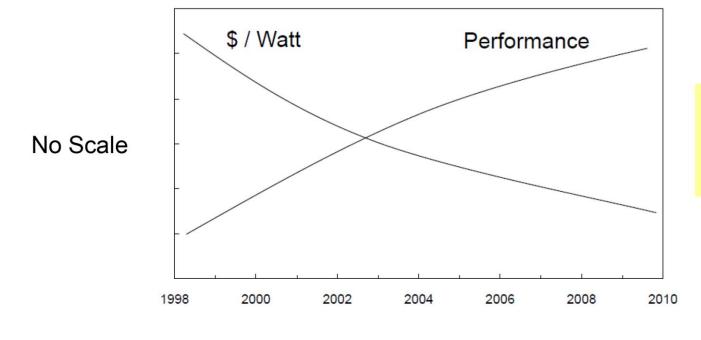
1. Innovation of Transistors



Freescale introduced LDMOS on April 13, 2011. The video shows high ruggedness of LDMOS on fully reflected circuit.


NXP document in 2012. The chart describes "Cost per Watt" trends in LDMOS Cost versus Performance.

NXP document released in June 2017, describing the major advantages of solid-state amplifier compared to vacuum tube amplifier.


1-A. Innovation of Transistors

SSA Si Transistor Trends

Trends in LDMOS Cost vs Performance

Tao Tang will talk tomorrow about benefits of using GaN Transistors

This behavior has enabled entire industries where no commercially available / viable solution was possible before

2. R&K Technical Capability and Strength

Mass Production Experience (SSA for PHS Base Station)

1995: R&K started designing and developing SSA for mobile communication base station

2000: Accumulated sales of SSA: 20 thousand units

2002: Move into new premise.

Accumulated sales of SSA: 1 million units.

2003: Accumulated sale of SSA: 1.2 million units

2004: Built 2nd Factory Building

Total 2.3million SSAs shipped!

*This shipment record was introduced on 50th year anniversary edition of Microwave Journal magazine

2. R&K Technical Capability and Strength

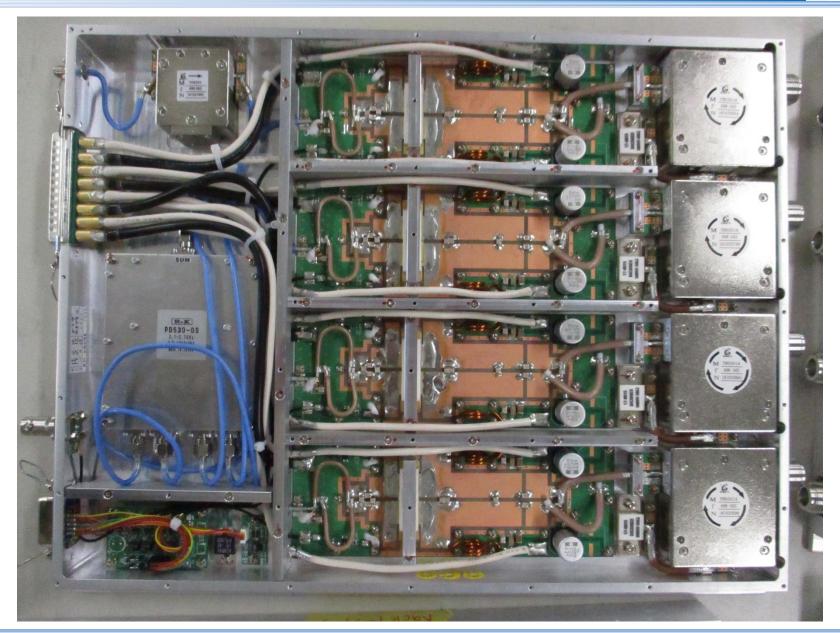
RF "4-Parallel" Module (4.4kW) Inner Photo. 4 solid-state amplifier pallets are equipped in parallel within the module.

Characteristic of single transistor at 2MHz band, 500MHz, 1kW, power supply efficiency 61%

12 pcs of RF "4-Parallel" modules (50kW) and 6 pcs of heatsinks are inserted into the rack.

Power combining at final stage amplifier unit.
Initial spec performance secured even
with 7% transistor failure

Rack photo with installed modules. Amplifier system can operate after relocating modules. (cold-swap)



Achieve switching power supply efficiency ≥ 96%. Resonant switching power supply is hot-swappable.

2-A. R&K Technical Capability and Strength

2-B. R&K Technical Capability and Strength

2-C. R&K Technical Capability and Strength

500MHz, 300kW/Pulse

2-F. R&K Technical Capability and Strength

GE Critical Power

(gg)

GP100 6 kW True Three Phase Rectifier

Applications

- · Cloud Data Centers that want phase balanced IT loads
- · Super Computers
- 380/480 Vac Three Wire 3Ø directly to data cabinets
- Routers/VoIP/Soft and other Telecom Switches
- 48 V_{dc} distributed power architectures
- Industrial Applications

Advanced Features

- Remote Upgrade from RS485 (or I²C)
- · Improved Power Metering Accuracy
- · Preemptive Analytics

Use Scenarios

The GP100 Rectifier provides a high efficiency, intrinsically phase balanced way to power data center cabinets directly from 3 wire 30 480Vac (or 380 Vac). The AC can be supplied by a UPS, Generator, or line transformer with any accepted winding or grounding configuration. The neutral wire is not connected to the GP100, so there is zero risk of neutral currents in any normal or fault scenario.

Should there be a line fault, the GP100 is compatible with GETLE UPSs in Ring Bus or traditional configurations, as well as other UPSs with a transfer time of less than 8 ms. Should there be a rectifier fault, the GP100 is parallelable up to 100 units. In addition to applications without batteries on the output, the GP100 is suitable for use in traditional centralized battery applications, or in distributed systems with traditional or advanced battery technology. Isolated serial communications and extensive testing allow the GP100 to work in either n+1 or N+N configurations.

The GP100 System provides a full featured , N+N redundant 480Vac to 48Vdc battery reserve system in one 19" rack unit.Two GP100s and a GE Critical Power Edge controller in each cabinet allow 480Vac to be the only building level distribution voltage. Application tailored energy storage batteries can be deployed in data cabinets as needed. The standard GP100 is designed for international deployment, accepting 3 phase power from 380V (Global) or 480V (North American) sources. This system is an excellent choice for facility scale data applications requiring modular, very high efficiency AC to 48Vdc intermediate voltage conversion, such as in cloud data centers.

Features

- Compact 1RU form factor provides high power density of 27 Watts/Cubic inch
- · Efficient with 96.5% efficiency from 50 to 100% load
- · Balanced draw from each of the three AC input phases
- 6000 Watts at 48 Vdc from three wire 3Ø 380 or 480 Vac (no neutral is needed)
- Constant power for output voltages from 48 to 58 Vdc (Output voltage programmable: Off, and from 42 to 58 Vdc)
- Communications choices: RS485 or PMBus compliant Dual redundant I2C serial bus with +5V aux @ 2A
- Operates over a broad temperature range: -40°C through +75°C (Output derates at 2% per °C beginning at +55 °C)
- Fail safe performance Internal faults isolated from output bus; hot insertion capabilities allow for rectifier replacement without system shutdown; soft start and inrush current protection prevent nuisance tripping of upstream breakers.
- Extended service life parallel operation with automatic load sharing ensures that units are not unduly stressed
- Simple Human Factors 3 front panel LEDs indicate AC good (Green), DC good (Green) or Fault (Red)
- Agency Compliant EN/IEC/UL/CSA C22.2 60950-1 2nd edition +A1, CE mark, FCC part 15, EN55022 Class A, EN61000 immunity and transient, EN/IEC 61000-3-2 and EN 60555-2 Power factor correction, IPC 9592 Class II Shock & Vibration, NEBS GR-1089, GR-63-CORE, RoHS6/6.

Electrical Specifications

Input

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Startup Input Voltage	V _{IN}	300		320	Vac
Operating Voltage Range (3Ødelta with safety frame ground)	V _{IN}	320	380/480	530	Vac
Voltage Swell (no damage)	V _{IN}			600	Vac
Frequency	Fin	47	50/60	66	Hz
Operating Current (3Ø - all phases operational)	In		10-8		Adc
Inrush Transient (per Ø at 480V _{ac} , 25°C, excluding X-Capacitor charging)	I _{IN}		25	30	Apk
Leakage Current (per Ø, 530V _{ac} , 60Hz)	I _N		5		%
Power Factor (50 – 100% load)	PF	0.96	0.995		
Efficiency (480V _{ac} @ 25°C from 50 to 100% load)	η		96.5		%
Holdup Time (output allowed to decay down to 40V _{dc})	T		12		ms
Ride Through (at 480V ₃₀ , 25°C)	T		1/2		cycle

Output -52VDC Main

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Output Power ($430 - 530V_{sc} - 3\emptyset$, $T_{arrb} = 45^{\circ}C V_{out} > 48V_{dc}$)	W	6000	1.		W _{dc}
Default Set Point	Vour		52		V _{dc}
Overall Regulation (load, temperature, aging) 0 - 45°C, LOAD > 2.5A > 45°C Regulation with Controller		-2 -0.05		+2 +0.05	% %
Output Voltage Set Range - Set by firmware		42		58	V_{dc}
Output Current (54 / 52V _{dcs} T _{emb} = 45°C)	lout	1		111/115	Ade
Output Ripple Peak-to-Peak (5Hz to 20MHz)	Vout			250	mV _{p-p}
External Bulk Load Capacitance	Соит	0		1700	η F/A

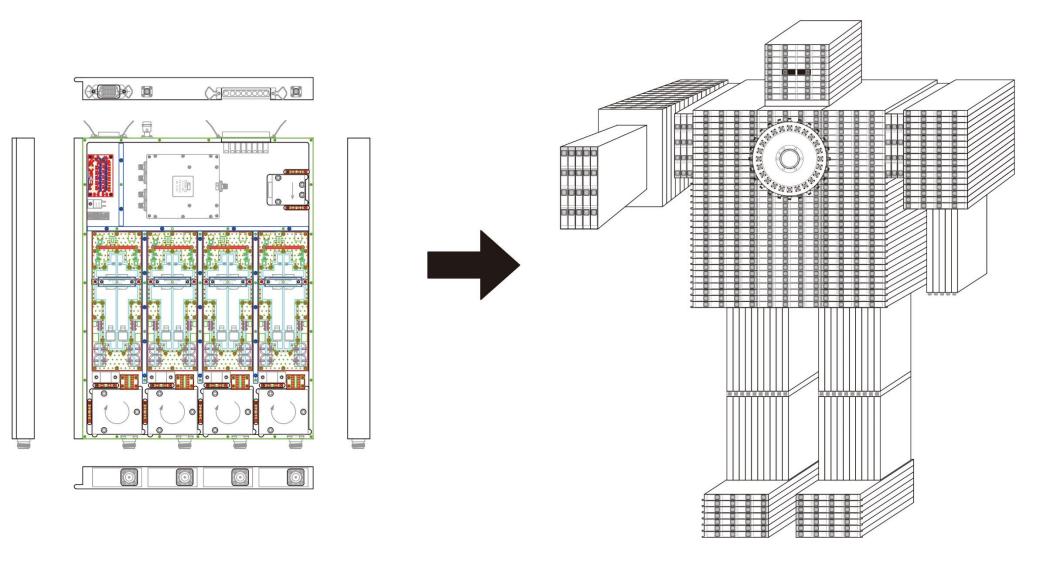
Environmental, Compliance & Physical

Operating Ambient Temperature Range	-40°C to +75°C (Output derates at 2%/°C beginning at 55°C)
Cooling Method	Front to back airflow with onboard temperature controlled fans
Operating Relative Humidity	0 - 95% (non-condensing) for use in a controlled environment
Electromagnetic Compatibility	FCC Part 15, EN 55022 (CISPR22), EN 55024, Level A, GR-1089
Agency Certifications* Planned	UL1950, EN60950, CSA'234/950, NEBS GR-1089, GR-63-CORE, CE Mark, RoHS 6/6
Heat Release	217 Watts, or 740 BTU/hr at full load of 6000 Watts
Acoustic Noise	<58dBA @ 25°C
Mean Time Between Failure (MTBF)	300k Hours @ 25°C per Telcordia SR-332, Method 1, Case 3
Height x Width x Depth, Weight, Packaged Weight	1.61x7.97x17.36in (41x202x441mm), 8.95 lbs (4.1 kg), 9.85 lbs (4.5 kg)

Ordering Options

PRODUCT CODE	DESCRIPTION	OUTPUT VOLTAGE	COMCODE
GP100H3R48TEZ	110A rectifier with isolated RS485 communications	52V	150034309
GP100H3R48TEZ-IN	110A rectifier with isolated RS485 communications	48V	150045497
GP100H3M54TEZ	110A rectifier with isolated dual I ² C communications	54V	150039274

GE Critical Power 601 Shiloh Road Plano, TX 75074 +1 877 546 3243 www.gecriticalpower.com

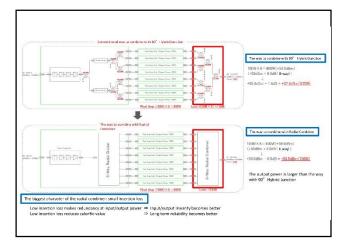

*Registered trademark of the General Electric Company.

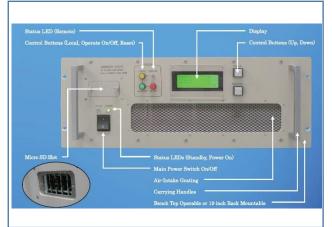
The GE brand, logo, and lumination are trademarks of the General Electric Company. © 2015 General Electric Company, Information provided is subject to change without notice. All values are design or typical values when measured under laboratory conditions.

GP100AC-FS, Rev. 08/2015

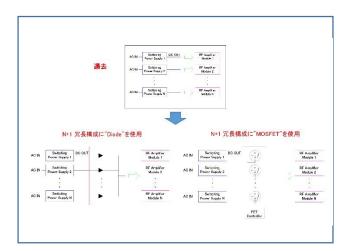
2-G. R&K Technical Capability and Strength

2-H. R&K Technical Capability and Strength

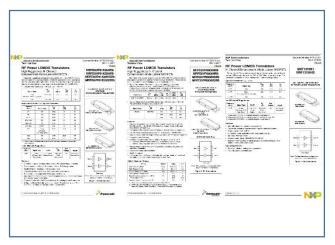



1.3GHz ≥ 3.8kW

3. Architectural Change of SSA and Innovation

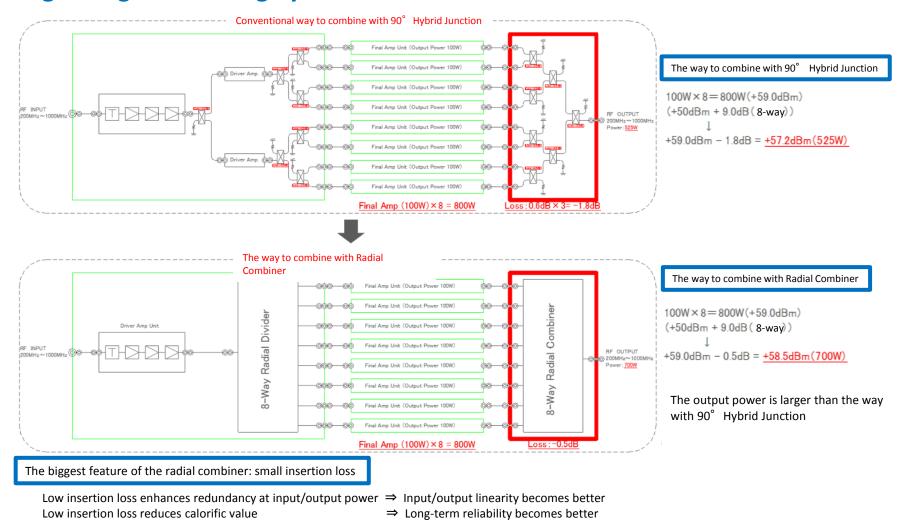


Conventional 2-way Combining vs Status Monitoring and SD Card Recording Single-Stage Combining by Radial Combiner External Output via Modbus Communication

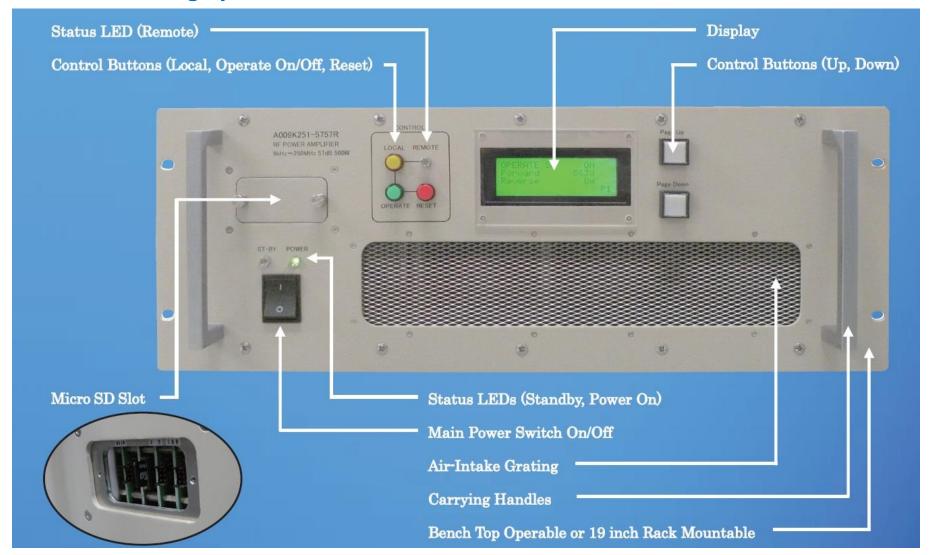

Status Monitoring and SD Card Recording Long-term Data Recording by 1sec by 1min.

Output Power Expandability by Building Block Structure

High Available Power Supply

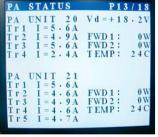

Low Cost LDMOS available in Market High VSWR Handling/Broadband Lineup

3-A. Architectural Change of SSA and Innovation


Single-Stage Combining by Radial Combiner

3-B. Architectural Change of SSA and Innovation

Multi Monitoring System



3-C. Architectural Change of SSA and Innovation

Multi Monitoring System

[写真] 進行波出力電力、反射電力

[写真] 詳細な動作状態

[写真] 小型LCDメーター

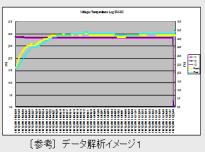
USBメモリに監視データを10年以上保存可能!

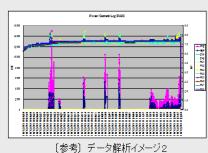
過去が見える!!

監視データをTFTorLCDにて常時確認可能!

⇒ 現在が見える!!

長期間使用後におけるデータ解析から故障予測も可能!


⇒ 未来が見える!?


万が一の故障時にも故障箇所の特定が容易!

⇒ 故障箇所が見える!!

- 1. 【パネル種類】 以下の2種類があります。
 - ■①大型 TFT 20文字15行/カラー
 - ■②小型 LCD 20文字 4行/バックライト2色
- 2. 【表示内容】 使用中、常に以下の項目を表示します。
 - ■RF-SWのON/OFF状態、進行波出力電力、反射電力
- 3. 【アラーム表示】 アラーム発生時、以下の内容を表示します。
 - ■・過大出力 ・過大反射 ・温度異常 ・電源異常
 - ■・デバイス消費電流異常 ・デバイス供給電圧異常 ・エマージェンシー

- 4. 【保守点検】 コマンド入力により、以下の動作状態を表示/確認が可能です。
 - ■・内部アンプモジュール毎のデバイス消費電流、供給電圧
 - ■・アンプユニット毎の筐体内部温度
- 5. 【データ保存】 監視記録データを内部USBメモリに10年以上保存が可能です。
 - ■・使用年月日、動作時間
- :1ポイント/分 ⇒ 10年
- :1ポイント/秒 ⇒ 60日
- ■・進行波出力電力、反射電力
- ■・内部アンプモジュール毎のデバイス消費電流、供給電圧
- ■・アンプユニット毎の筐体内部温度
- 6. 【解析/検証】 USBメモリからデータを取り出し、動作状態を解析する事が可能です。
 - ■・データはテキストファイルで保存される為、エクセルで取り込み、グラフ化する事もできます。 長期間使用による経年劣化等の解析/検証も可能です。

- 7. 【故障診断】 万が一の故障の際も、故障箇所の特定が容易です。
 - ■・内部アンプモジュール毎のデバイス消費電流、供給電圧を常に監視/記録している為、 万が一増幅器ユニットが故障した場合でも、故障箇所の特定が容易です。

3-D. Architectural Change of SSA and Innovation

Expandability of SSA

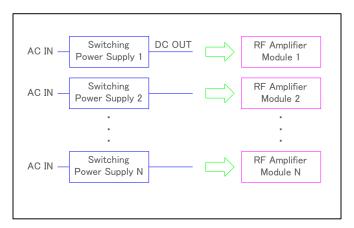
R&K - CA200BW0.4-7282RP

200MHz 200kW

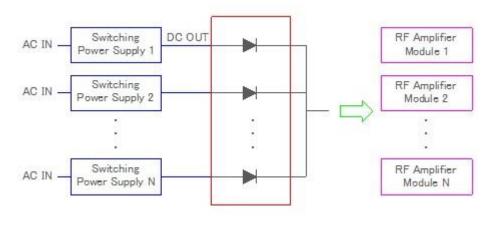
R&K's SSA can expand its output power by Building Block Construction that is expandable system hardware architecture designed to add final amplifier units and capacitor bank units later when more output power is required for test or application at the user.

e.g.

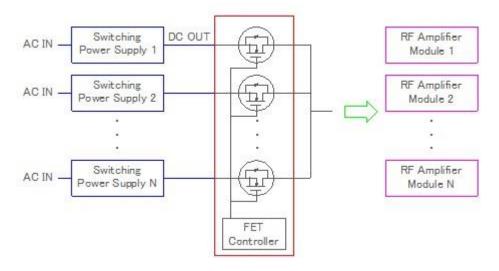
In this case, output power can increase from 150kW to 200kW by adding one set of Final Amp Unit and Capacitor Bank Unit, and replacing a Radial Combiner from 36-way to 48-way.


R&K - CA200BW0.4-7383RP

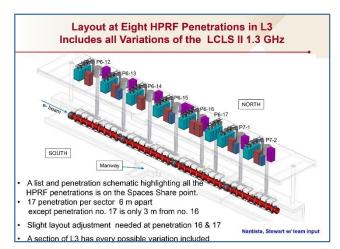
3-E. Architectural Change of SSA and Innovation


HAPS (High Availability Power Supply)

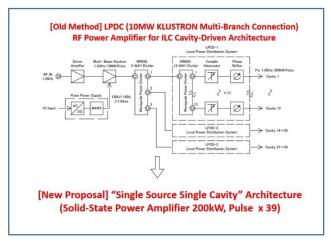
Previously..



Use "Diode" for N+1 Redundancy

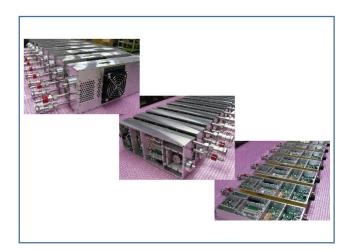


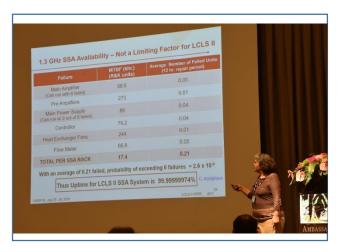
Use "MOSFET" for N+1 Redundancy



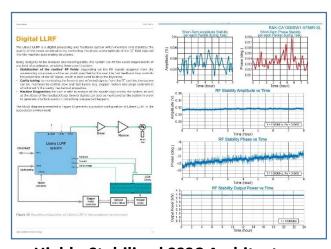
4. Evolution and Completion of Modern Green SSA Application

Trends for SSSC Architecture Highly reliable SSA accelerates this trend.

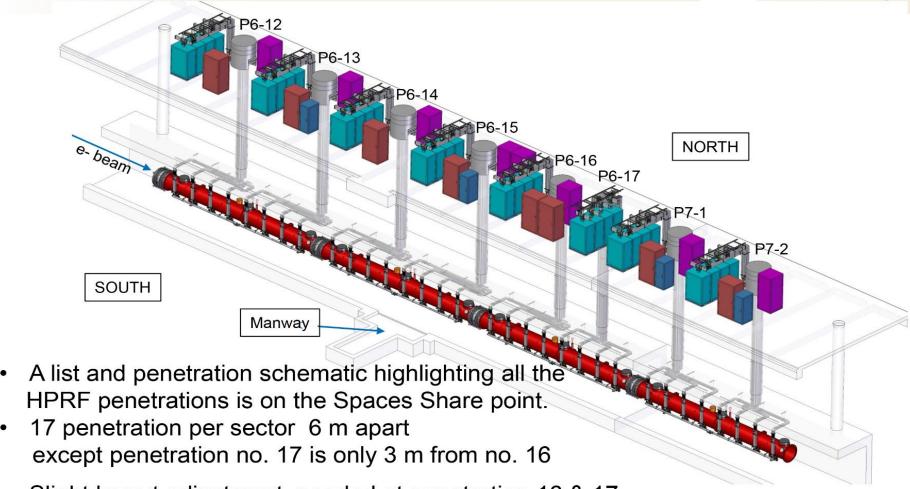

10MW-MBK and LPDS-39 Distribution MARX-Mod, LPDS, Circulator, Dummy


 $1300MHz \ge 3.8kW CW-SSA$ 1st Shipment for SSSC Architecture System

4 more delivered to FNAL and 5 more to JLAB in April 2016 for full complement to test one Cryo Module with 8 Cavities. (Note FNAL


already had one SSA capable of 3.8 KW output.)

Cost Reduction by Standardized Design And Volume Production



Presentation in CWRF 2018 Taiwan **Performance Review and Evaluation**

Highly-Stabilized SSSC Architecture Full Auto-control and Performance Stability

Layout at Eight HPRF Penetrations in L3 Includes all Variations of the LCLS II 1.3 GHz

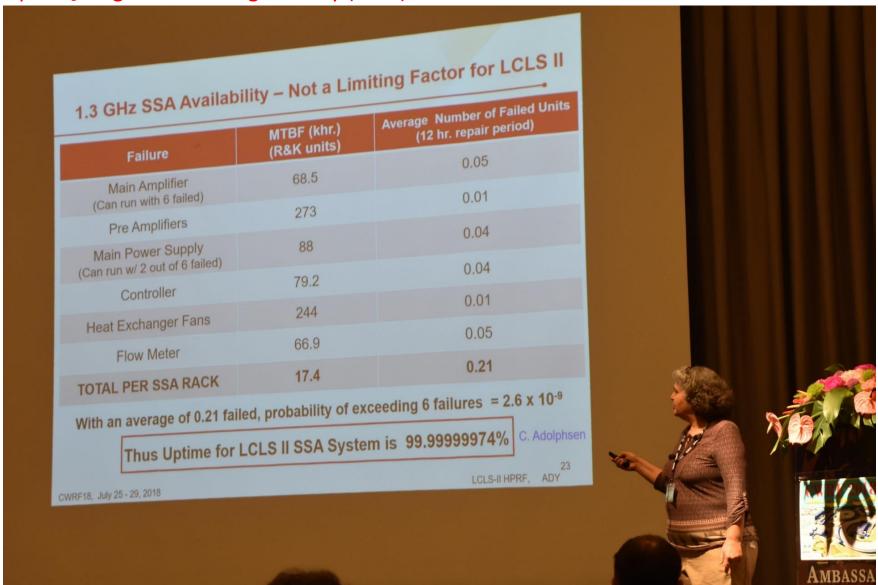
Slight layout adjustment needed at penetration 16 & 17

A section of L3 has every possible variation included
 CWRF16, July 21 - 24, 2016

Nantista, Stewart w/ team input

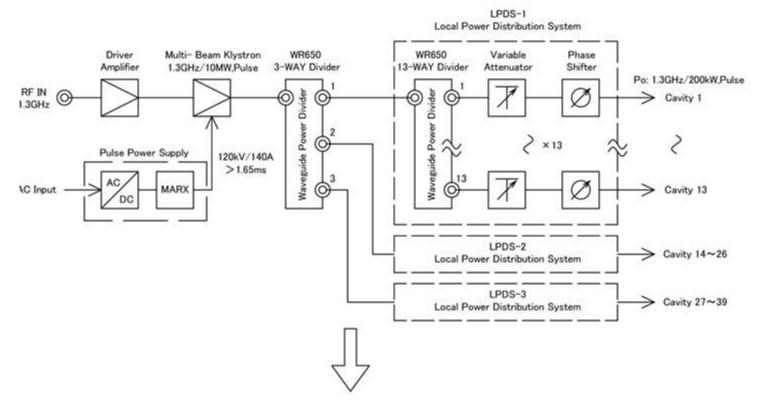
LCLS-II HPRF, AD

R&K 7 1.3 GHz SSAs at R&K Prior to Shipment



- 6 of these were shipped to FNAL and JLAB (3 each) in Januarry, 2016 for Cyro Cavity Tests.
- 1 of these was left at R&K for 2.5 months for long term tests
 - Continuous running for 2 months.
 - PA Module Swap tests from SSA to SSA show remarkable compatability – important for operations when swapping w/spares
- 4 more delivered to FNAL and 5 more to JLAB in April 2016 for full complement to test one Cryo Module with 8 Cavities. (Note FNAL already had one SSA capable of 3.8 KW output.)

4-A. Evolution and Completion of Modern Green SSA Application



[New Proposal] Single Source Single Cavity (SSSC) Architecture

[Old Method] LPDC (10MW KLYSTRON Multi-Branch Connection) RF Power Amplifier for ILC Cavity-Driven Architecture

[New Proposal] "Single Source Single Cavity" Architecture (Solid-State Power Amplifier 200kW, Pulse x 39)

4-D. Evolution and Completion of Modern Green SSA Application

Ultra-high Stability of Single Source Single Cavity Structure

2018 Editio

Digital LLRF

Instrumentation Technologies

The Libera LLRF is a digital processing and feedback system which monitors and stabilizes the quality of the beam acceleration by controlling the phase and amplitude of the RF field injected into the machine accelerating structures.

Being designed to be modular and reconfigurable, the system can fit the exact requirements of any kind of accelerator, providing three core functions:

- Stabilization of the cavities' RF fields: depending on the RF signals acquired from the
 accelerating structures and the set-point specified by the user, the fast feedback loop controls
 the properties of the RF signal, which is later used to drive the Klystrons.
- Cavity tuning: by monitoring the forward and reflected signals from the RF cavities, the system
 can be interfaced to control slow and fast tuners (e.g. stepper motors and piezo controllers)
 which modify the cavity mechanical properties.
- Machine Diagnostics: the user is able to analyze all the signals digitized by the system, as well
 as the status of the feedback loop. Several signals can also be monitored by the system in order
 to generate Interlock events if something unexpected happens.

The block diagram presented in Figure 13 presents a possible configuration of Libera LLRF in the accelerator environment:

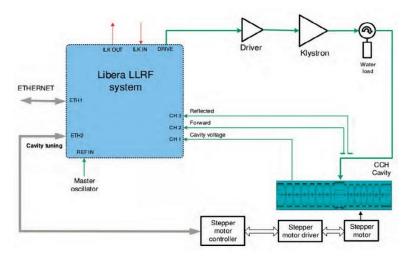
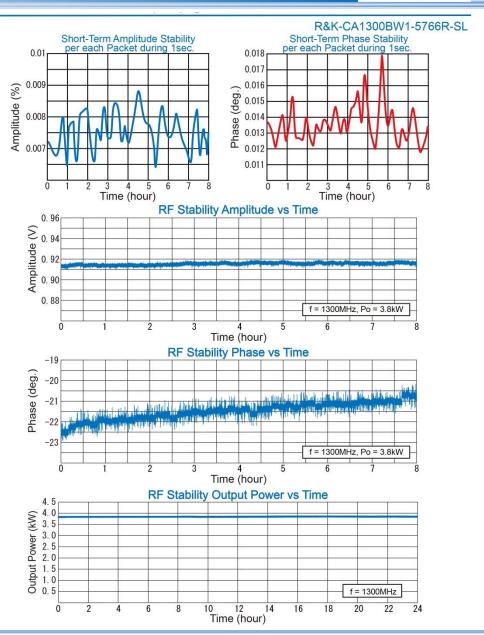
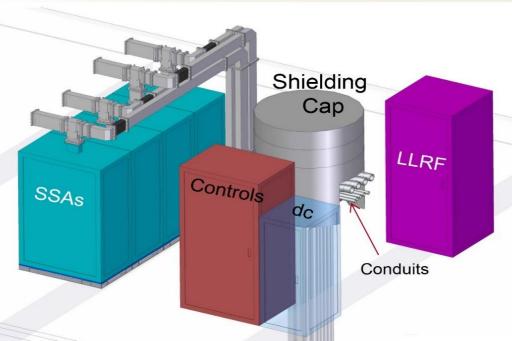
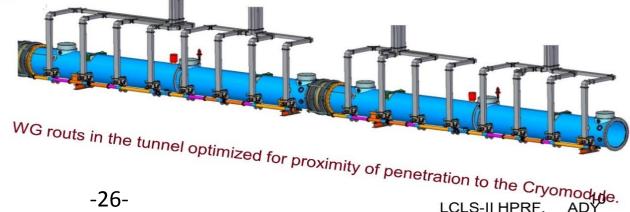




Figure 13: Possible configuration of Libera LLRF in the accelerator environment



Basic Layout at a typical LCLS-II 1.3 GHz HPRF Penetration Installation Level Waveguide Layout 80% Complete

7 possible variations at the accelerator housing ceiling.

Nantista, Stewart w/ team input

[New Proposal] Single Source Single Cavity (SSSC) Architecture

SLAC-PUB-17108

HIGH PRECISION RF CONTROL FOR SRF CAVITIES IN LCLS-II

L. Doolittle*, K. Campbell, Q. Du, G. Huang, J. Jones, C. Serrano, V. Vytla, LBNL, Berkeley, CA 94720, USA S. Babel, A. Benwell, M. Boyes, G. Brown, D. Cha, G. Dalit, J. DeLong, J. Diaz-Cruz, B. Hong, R. Kelly, A. McCollough, A. Ratti, C. Rivetta, SLAC, Menlo Park, CA 94720, USA R. Bachimanchi, C. Hovater, D. Seidman, JLab, Newport News, VA 23606, USA B. Chase, E. Cullerton, J. Einstein, D. Klepec, FNAL, Batavia, IL 60555, USA

ABSTRACT

The unique properties of SRF cavities enable a new generation of X-ray light sources in XFEL and LCLS-II. The LCLS-II design calls for 280 L-band cavities to be operated in CW mode with a Q_L of 4×10^7 , using Single-Source Single-Cavity control. The target RF field stability is 0.01% and 0.01° for the band above 1 Hz. Hardware and software implementing a digital LLRF system has been constructed by a four-lab collaboration to minimize known contributors to cavity RF field fluctuation. Efforts include careful attachment to the phase reference line, and minimizing the effects of RF crosstalk by placing forward and reverse signals in chassis separate from the cavity measurement. A low-noise receiver/digitizer section will allow feedback to operate with high proportional gain without excessive noise being sent to the drive amplifier. Test results will show behavior on prototype cryomodules at FNAL and JLab, ahead of the 2018 final accelerator installation.

INTRODUCTION

LCLS-II is an X-ray Free Electron Laser (FEL) under construction at SLAC, driven by a superconducting RF Linac [1]. The electron beam quality will directly translate to the quality of the X-ray beams produced in undulators and used for scientific research in the end stations; hence strict requirements have been placed on the stability of the accelerating cavity fields. An initial stability goal of 0.01° in phase and 0.01% amplitude has been set for the main Linac, composed of 280 nine-cell 1300 MHz superconducting cavities [2].

Plans for the RF controls for the 1.3 GHz cavities have been described elsewhere [3] [4] [5] [6]. It is based on mainstream digital LLRF technology, and incorporates many ideas developed for LBNL's NGLS proposal [7]. The controls use a Single Source Single Cavity (SSSC) architecture, where each cavity has a dedicated amplifier. SSSC has enormous value for simplifying control of narrow-band SRF cavities, It is also a sensible choice for a CW machine, where Solid-State Amplifier technology has approximately matched Klystrons in price, and they are considered easier to operate and maintain.

The LLRF subsystem of LCLS-II is itself a four-laboratory collaboration: LBNL for architecture, FPGA hardware and RF DSP programming, and ADC/DAC hardware development; Fermilab for downconverters, upconverters and piezo

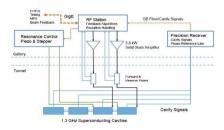


Figure 1: System hardware configuration supporting half of a cryomodule (one of two RF Station chassis shown)

drivers; JLab for interlocks, stepper controls, and power supplies; and SLAC for LO distribution, MO and PRL, global control system integration, commissioning, transition to operations, and project management.

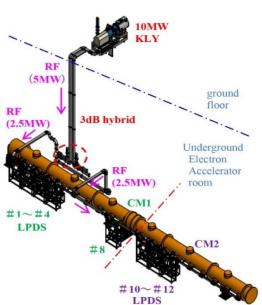
SYSTEM DESIGN

Each rack (supporting four cavities) includes a separate Precision Receiver Chassis (PRC), linked only by optical fiber to two RF Control Chassis (RFS), as shown in figure 1. This density of rack equipment matches the civil layout of the accelerator, where one LLRF rack is cabled to one penetration to the tunnel. The physical separation between PRC and RFS maximizes isolation between the critical stabilized cavity signals and the wildly fluctuating forward and reverse monitoring channels. Preliminary measurements show that this separation has succeeded, in that the measured isolation is at least 125 dB.

The system bypasses some of the usual compromises in choosing an IF by means of an unusual split-LO design, where a low-frequency IF (20 MHz) is used for RF down-conversion, and a higher-frequency IF (145 MHz) is used for RF upconversion.

The downconversion IF is 7/33 of the ADC clock rate, yielding near-IQ sampling [8]. The low downconversion IF is good for selecting low-1/f-noise amplifiers, and for reducing crosstalk. The 94.3 MHz ADC clock rate is high enough that the whole 9-cell TM₀₁₀ passband (1274–1300 MHz) fits in the first Nyquist zone. The high upconversion IF allows commercial four-section tubular filters with 45 MHz bandwidth to remove the undesired sideband after mixing.

^{*} Irdoolittle@lbl.gov; This work supported under DOE Contract DE-AC02-76SF00515


4-E. Evolution and Completion of Modern Green SSA Application

[Old Method] LPDS (10MW KLYSTRON Multi-Branch Connection)

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 MOP038

Source:

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan, <u>"STATUS OF RF POWER DISTRIBUTION SYSTEM CONSTRUCTION FOR ILC IN STF"</u> Authors:

Norihiko Hanaka, Kazuya Ishimoto, Naoto Numata, Kazuhiko Yasu, Mitsuo Akemoto, Dai Arakawa,

Masato Egi, Hiroaki Katagiri, Tateru Takenaka, Hiromitsu Nakajima, Shigeki Fukuda, Hideki Matsushita,

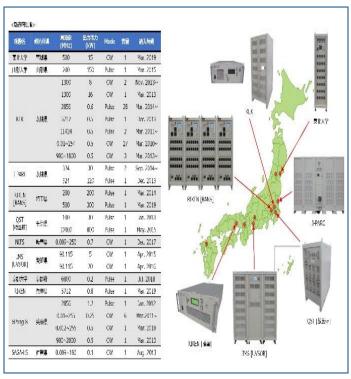
Toshihiro Matsumoto, Takako Miura, Shinichiro Michizono

Figure 7: LPDS The small unit.

Table 1: Process of Operation and the Required Time (LPDS The Small Unit)

(El Do The Sintil Cint)	
作業工程	必要人数/所要時 間
①アルミ枠設置床へ墨入れ	1人/3時間
(1 台目のみ)	
②アルミ枠固定	1人 / 1時間
③導波管サポート材取付け	1人 / 4時間
④サーキュレータ組込	2人 / 3時間
⑤ハイブリッツド組込	2人 / 2時間
⑥フェーズシフター組込	2人 / 2時間
⑦ダミーロード組込	2人 / 1時間
⑧導波管の最終接続	2人 / 3時間
⑨RF 入力試験	1人 /10 時間
LPDS 小ユニット 1 台 合計	1~2 人 /26 時間
LPDS 小ユニット 10 台 合計	1~2 人/260 時間

Unlike "Single Source Single Cavity" architecture, LPDS (Multi-distributing system for high power klystron power amplifier) consists of power splitter, variable attenuator, phase shifter, isolator, dummy load, and so on. They are combination of passive microwave components, but the structure relies heavily on the mechanical durability.

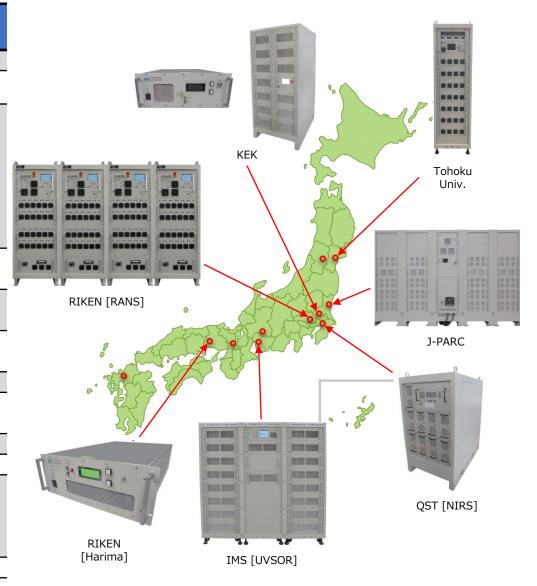


Extremely complicated mechanical system. In order to achieve long term reliability for phase and power accuracy with 39-way distribution, adjustment by highly skilled and experienced technicians is absolutely necessary. The system is not suitable for simple, highly accurate, and automated operation.

5. R&K Recent Delivery Status

For Domestic Market

For SLAC related Projects


For European/USA Market

5-A. R&K Recent Delivery Status

<Listed by Prefecture>

Tohoku Univ. Miyagi 500 15 CW 1 Mar. 2019 Yamagata Univ. Yamagata 200 150 Pulse 1 Mar. 2015 Image: Mar. With Individual Control 1300 8 CW 2 Nov. 2013~ Image: Mar. With Individual Control 1300 16 CW 1 Mar. 2013~ Image: Mar. With Individual Control 2856 0.6 Pulse 28 Mar. 2014~ Image: Mar. With Individual Control 2856 0.5 Pulse 1 Dec. 2013 Image: Mar. With Individual Control 30.0 Pulse 2 Mar. 2010~ Image: Mar. With Individual Control 324 30 Pulse 2 Sep. 2014~ Image: Mar. With Individual Control 324 120 Pulse 1 Dec. 2013 Image: Mar. With Individual Control 30 Pulse 1 Mar. 2014~ QST (NIRS) Chiba 100 30 Pulse 1 Jan. 2013 Image: Mar. With Individual Control <t< th=""><th>Institution</th><th>Prefecture</th><th>Frequency (MHz)</th><th>Output Power (kW)</th><th>Mode</th><th>Qty.</th><th>Delivery Date</th></t<>	Institution	Prefecture	Frequency (MHz)	Output Power (kW)	Mode	Qty.	Delivery Date
Nov. 2013	Tohoku Univ.	Miyagi	500	15	CW	1	Mar. 2019
Net	•	Yamagata	200	150	Pulse	1	Mar. 2015
KEK Ibaraki 2856 0.6 Pulse 28 Mar. 2014~ 5712 0.5 Pulse 1 Dec. 2013 11424 0.5 Pulse 2 Mar. 2011~ 0.01~254 0.5 CW 27 Mar. 2010~ 900~1800 0.5 CW 3 Mar. 2013~ 324 30 Pulse 2 Sep. 2014~ 324 120 Pulse 1 Dec. 2013 RIKEN RANS] Saitama 200 200 Pulse 1 Mar. 2014 [RANS] Chiba 100 30 Pulse 1 Mar. 2019 QST [NIRS] Chiba 1000 30 Pulse 1 Mar. 2013 INFS Gifu 0.009~250 0.7 CW 1 Apr. 2015 [UVSOR] Aichi 90.115 5 CW 1 Apr. 2016 Kyoto Univ. Kyoto 6000 0.2 Pulse 1 Jan. 2012 RIKEN Hyogo 5712 0.8 Pulse 1 Mar. 20			1300	8	CW	2	Nov. 2013~
KEK Ibaraki 5712 0.5 Pulse 1 Dec. 2013 11424 0.5 Pulse 2 Mar. 2011~ 0.01~254 0.5 CW 27 Mar. 2010~ 900~1800 0.5 CW 3 Mar. 2013~ Pulse 2 Sep. 2014~ 324 30 Pulse 2 Sep. 2014~ 324 120 Pulse 1 Dec. 2013 RIKEN Saitama 200 200 Pulse 1 Mar. 2014 [RANS] Saitama 500 300 Pulse 1 Mar. 2019 QST [NIRS] Chiba 1000 30 Pulse 1 Jan. 2013 NIFS Gifu 0.009~250 0.7 CW 1 Dec. 2017 IMS [UVSOR] Aichi 90.115 5 CW 1 Apr. 2015 Kyoto Univ. Kyoto 6000 0.2 Pulse 1 Jan. 2012 RIKEN			1300	16	CW	1	Mar. 2013
11424			2856	0.6	Pulse	28	Mar. 2014~
Dec. 2013 Dec. 2014 Dec. 2013	KEK	Ibaraki	5712	0.5	Pulse	1	Dec. 2013
Poon			11424	0.5	Pulse	2	Mar. 2011~
J-PARC Ibaraki 324 30 Pulse 2 Sep. 2014~ 324 120 Pulse 1 Dec. 2013 RIKEN			0.01~254	0.5	CW	27	Mar. 2010~
Terms			900~1800	0.5	CW	3	Mar. 2013~
RIKEN [RANS] Saitama 200 200 Pulse 1 Mar. 2014 500 300 Pulse 1 Mar. 2014 500 300 Pulse 1 Mar. 2019 QST [NIRS] Chiba 1000 800 Pulse 1 May. 2015 NIFS Gifu 0.009~250 0.7 CW 1 Dec. 2017 IMS [UVSOR] Aichi 90.115 5 CW 1 Apr. 2015 Kyoto Univ. Kyoto 6000 0.2 Pulse 1 Jul. 2018 RIKEN Hyogo 5712 0.8 Pulse 1 Jan. 2019 SPring-8 Hyogo 0.01~255 0.25 CW 6 Mar. 2011 SPring-8 Hyogo 0.01~255 0.5 CW 1 Mar. 2010 900~2000 0.5 CW 1 Mar. 2010	1 DADC	Tharaki	324	30	Pulse	2	Sep. 2014~
RIKEN [RANS] Saitama 500 300 Pulse 1 Mar. 2019 QST [NIRS] Chiba 1000 30 Pulse 1 Jan. 2013 INFS Gifu 0.009~250 0.7 CW 1 Dec. 2017 IMS [UVSOR] Aichi 90.115 5 CW 1 Apr. 2015 Kyoto Univ. Kyoto 6000 0.2 Pulse 1 Jul. 2018 RIKEN Hyogo 5712 0.8 Pulse 1 Mar. 2019 SPring-8 Hyogo 5712 0.8 Pulse 1 Jan. 2012 0.01~255 0.25 CW 6 Mar.2011~ SPring-8 Hyogo 0.01~255 0.5 CW 1 Mar. 2010	J-PARC	IDalaki	324	120	Pulse	1	Dec. 2013
QST [NIRS] Chiba 100 300 Pulse 1 Mar. 2019 NIFS Chiba 10000 800 Pulse 1 Jan. 2013 NIFS Gifu 0.009~250 0.7 CW 1 Dec. 2017 IMS [UVSOR] Aichi 90.115 5 CW 1 Apr. 2015 Kyoto Univ. Kyoto 6000 0.2 Pulse 1 Jul. 2018 RIKEN Hyogo 5712 0.8 Pulse 1 Mar. 2019 SPring-8 Hyogo 5712 0.8 Pulse 1 Jan. 2012 0.01~255 0.25 CW 6 Mar.2011~ 0.012~255 0.5 CW 1 Mar. 2010 900~2000 0.5 CW 1 Mar. 2013	RIKEN	Caitama	200	200	Pulse	1	Mar. 2014
[NIRS] Chiba 10000 800 Pulse 1 May. 2015 NIFS Gifu 0.009~250 0.7 CW 1 Dec. 2017 IMS Aichi 90.115 5 CW 1 Apr. 2015 [UVSOR] 4000 0.2 Pulse 1 Jul. 2018 RIKEN Hyogo 5712 0.8 Pulse 1 Jan. 2019 SPring-8 Hyogo 0.01~255 0.25 CW 6 Mar.2011~ 0.012~255 0.5 CW 1 Mar. 2010 900~2000 0.5 CW 1 Mar. 2013	[RANS]	Sallama	500	300	Pulse	1	Mar. 2019
NIFS Gifu 0.009~250 0.7 CW 1 Dec. 2017	QST	Chiha	100	30	Pulse	1	Jan. 2013
IMS [UVSOR] Aichi 90.115 5 CW 1 Apr. 2015 Kyoto Univ. Kyoto 6000 0.2 Pulse 1 Jul. 2018 RIKEN Hyogo 5712 0.8 Pulse 1 Mar. 2019 SPring-8 Hyogo 2856 1.2 Pulse 1 Jan. 2012 0.01~255 0.25 CW 6 Mar.2011~ 0.012~255 0.5 CW 1 Mar. 2010 900~2000 0.5 CW 1 Mar. 2013	[NIRS]	CHIDa	10000	800	Pulse	1	May. 2015
[UVSOR] Aichi 90.115 20 CW 1 Apr. 2016 Kyoto Univ. Kyoto 6000 0.2 Pulse 1 Jul. 2018 RIKEN Hyogo 5712 0.8 Pulse 1 Mar. 2019 2856 1.2 Pulse 1 Jan. 2012 0.01~255 0.25 CW 6 Mar.2011~ 0.012~255 0.5 CW 1 Mar. 2010 900~2000 0.5 CW 1 Mar. 2013	NIFS	Gifu	0.009~250	0.7	CW	1	Dec. 2017
Kyoto Univ. Kyoto 6000 0.2 Pulse 1 Jul. 2018 RIKEN Hyogo 5712 0.8 Pulse 1 Mar. 2019 2856 1.2 Pulse 1 Jan. 2012 SPring-8 Hyogo 0.01~255 0.25 CW 6 Mar.2011~ 0.012~255 0.5 CW 1 Mar. 2010 900~2000 0.5 CW 1 Mar. 2013	IMS	\ ichi	90.115	5	CW	1	Apr. 2015
RIKEN Hyogo 5712 0.8 Pulse 1 Mar. 2019 2856 1.2 Pulse 1 Jan. 2012 0.01~255 0.25 CW 6 Mar.2011~ SPring-8 Hyogo 0.012~255 0.5 CW 1 Mar. 2010 900~2000 0.5 CW 1 Mar. 2013	[UVSOR]	AICH	90.115	20	CW	1	Apr. 2016
2856 1.2 Pulse 1 Jan. 2012 0.01~255 0.25 CW 6 Mar.2011~ 0.012~255 0.5 CW 1 Mar. 2010 900~2000 0.5 CW 1 Mar. 2013	Kyoto Univ.	Kyoto	6000	0.2	Pulse	1	Jul. 2018
SPring-8 Hyogo 0.01~255 0.25 CW 6 Mar.2011~ 0.012~255 0.5 CW 1 Mar. 2010 900~2000 0.5 CW 1 Mar. 2013	RIKEN	Hyogo	5712	0.8	Pulse	1	Mar. 2019
SPring-8 Hyogo 0.012~255 0.5 CW 1 Mar. 2010 900~2000 0.5 CW 1 Mar. 2013			2856	1.2	Pulse	1	Jan. 2012
0.012~255 0.5 CW 1 Mar. 2010 900~2000 0.5 CW 1 Mar. 2013	CD:: 0	Uhanna	0.01~255	0.25	CW	6	Mar.2011~
	SPIIIIg-8	Hyogo	0.012~255	0.5	CW	1	Mar. 2010
SAGA-LS Saga 0.009~100 0.1 CW 1 Aug. 2013			900~2000	0.5	CW	1	Mar. 2013
	SAGA-LS	Saga	0.009~100	0.1	CW	1	Aug. 2013

5-B. R&K Recent Delivery Status

Nº	Frequency	Power	Project	Total Qty	Status
1	185.7MHz	60kW CW	LCLS-II	2	Delivered
2	199.6MHz	3kW CW	LCLS- II	1	Delivered
3	358.54MHz	64kW Pulse	SPEAR3	1	Delivered
4	1.3GHz	80W CW	LCLS- II	7	Delivered
5	1.3GHz	3.8kW CW	LCLS- II	278	Delivered
6	1.3GHz	4.6kW CW	LCLS- II	3	Delivered
7	3.9GHz	900W CW	LCLS- II	16	Delivered
8	11.424GHz	500W Pulse	LCLS- II	1	Delivered
18	185.7MHz 358.54MHz				

T.

Delivery
Dec. 2017
Sep. 2017
Jun. 2016
Oct. 2017 Aug.2018
Jan. 2016 ~ Aug. 2018
Apr. 2018 Dec. 2018
Aug. 2018
Aug. 2017

Qty Delivered to Fermilab	Delivery
3 4 1	Jan. 2016 May 2016 Nov. 2016
8 (Scheduled)	T.B.D.

Qty Delivered to JLAB	Delivery
3 5	Jan. 2016 May 2016

185.7MHz 60kW CW

1.3GHz 3.8kW/4.6kW CW

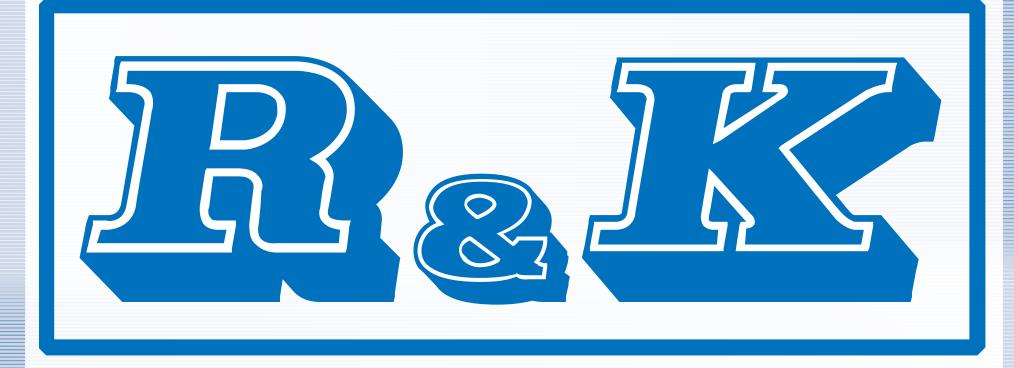
3.9GHz 900W CW (2 SSAs in Rack)

11.424GHz 500W Pulse

1) 185.7MHz 60kW CW SSPAs

These SSPAs were purchased

5-C. R&K Recent Delivery Status


< Alphabetical Order >

Laboratory	Country	Frequency (MHz)	Power (kW)	Mode	Qty.	Delivery
Argonno	USA	352	2	CW	16	Jul. 2019
Argonne	USA	117.3	10	CW	1	In Production
Brookhaven	USA	0.009~254	0.5	CW	2	Feb. 2019
CERN	Switz.	5~1000	0.25	CW	3	Nov. 2015
CERN	SWILZ.	5~1200	0.3~0.5	CW	2	Jan. 2019
CLS	Canada	0.009~250	0.1	CW	5	Oct. 2018
LBNL	USA	185.7	60	CW	2	Dec. 2017
Los Alamos	USA	201.25	20	Pulse	2	Dec. 2018
Notre Dame	USA	476	10	Pulse	1	Jan. 2016
Notice Dame	USA	2856	0.3	Pulse	2	Oct. 2015~
RAL/STFC	UK	0.5~30	3	CW	13	Aug. 2017~
KAL/STFC	UK	1.8~4	100	Pulse	1	In Production
SLAC*	USA	1300	3.8	CW	278	Jan. 2016~
TRIUMF	Canada	650~2800	0.3	CW	1	Mar. 2019

^{*}See "Recent Delivery Status of R&K SSPA for SLAC" for more comprehensive delivery record including the other models.

R&K Company Limited

RF/Microwave Power Amplifiers and Components

www.rk-microwave.com

1. The cooling water temperature (of the current vacuum tube design) is +50degC.

If the amplifier is 200kW and efficiency is 50%, consumption power is 3% of 400kW, 12kW/unit.

If RF conditions are same, average heat generation is stable.

Our preliminary calculation of heat generation of solid-state power amplifier is 6kW (12kW — 6kW).

For quantity 39 units, it's going to be 234kW.

If we calculate accurately, however, heat generation at 55% efficiency is 3% of 363,636kW, consumption power is 10.9kW/unit.

The heat generation of this semiconductor is 10.91kW-6kW=4.91kW. For quantity 39 units, it's going to be 191.49kW.

The footprint of power amplifier unit only needs to be within (W)100cm x (D)100cm x (H)70cm.

It would be possible to have power supply unit (3% of 200kW SSA with efficiency 50% is 1kW, power supply module is going to be 2~3 pcs/set) built-in the power amplifier if we further reconsider high-voltage power Supply, Marx modulator, and all waveguide components like circulator.

Measures against radiation is also possible.

3. AC-RF power supply final efficiency of 10MW klystron is about 40%, according to the comments from Prof. Yoshioka.

(Klystron itself is 65%, so I thought that more than 50% was possible...)

The efficiency of GaN transistor is 75%, AC power supply efficiency is 95%, total loss of all combiners is 1dB.

The calculation is $0.75 \times 0.95 \times 0.794328 = 0.5659587$, we can target 56% of AC to RF efficiency that is impossible for Klystron to achieve. Substantial cost reduction is possible by using GaN transistor of higher power like 1500W device.

1500W GaN transistors are just put on the market as of today, but some others additionally may come on to the market in 2020.