EWPO with dim-6 operators

Pier Paolo Giardino

Sendai, LCWS20I9

29/10/2019

ift

S. Dawson, PPG, arXiv: I 909.02000

EWPO in the SMEFT

Precision physics can give information on new physics

- At LEP it predicted the Higgs mass.
- Now it shows a small inconsistency for the W mass.

How can we systematically look for new physics?

Assume the SM is low energy limit of an EFT

$$
\mathscr{L}_{S M E F T}=\mathscr{L}_{S M}+\sum_{k=5} \sum_{i} \frac{\mathscr{C}_{i}^{k}}{\Lambda^{k-4}} \mathscr{O}_{i}^{k}
$$

Scale of new physics
Operators respect SM gauge symmetries

Assumptions: no "light" particles; Higgs is part of a $\operatorname{SU}(2)$ doublet

The theory is renormalizable order by order in Λ
We are interested only for dimension-6 operators

EWPO in the SMEFT

Effective Z and W couplings

Induced effective couplings

$$
\begin{aligned}
L \equiv & 2 M_{Z} \sqrt{\sqrt{2} G_{\mu}} Z_{\mu}\left[g_{L}^{Z q}+\delta g_{L}^{Z q}\right] \bar{q} \gamma_{\mu} q+2 M_{Z} \sqrt{\sqrt{2} G_{\mu} Z_{\mu}\left[g_{R}^{Z u}+\delta g_{R}^{Z u}\right] \bar{u}_{R} \gamma_{\mu} u_{R}} \\
& +2 M_{Z} \sqrt{\sqrt{2} G_{\mu}} Z_{\mu}\left[g_{R}^{Z d}+\delta g_{R}^{Z d}\right] \bar{d}_{R} \gamma_{\mu} d_{R}+2 M_{Z} \sqrt{2} G_{\mu} Z_{\mu}\left[g_{L}^{Z l}+\delta g_{L}^{Z l}\right] \bar{l} \gamma_{\mu} l \\
& +2 M_{Z} \sqrt{\sqrt{2} G_{\mu}} Z_{\mu}\left[g_{R}^{Z e}+\delta g_{R}^{Z e}\right] \bar{e}_{R} \gamma_{\mu} e_{R}+2 M_{Z} \sqrt{2} G_{\mu}\left(\delta g_{R}^{Z \nu}\right) \bar{\nu}_{R} \gamma_{\mu} \nu_{R} \\
& +\frac{\bar{g}_{2}}{\sqrt{2}}\left\{W _ { \mu } \left[\left(1+\delta g_{L}^{W q} \bar{u}_{L} \gamma_{\mu} d_{L}+\left(\delta g_{R}^{W q}\right) \bar{u}_{R} \gamma_{\mu} d_{R}\right]\right.\right. \\
& +W_{\mu}\left[\left(1+\delta g_{L}^{W l} \bar{\nu}_{L} \gamma_{\mu} e_{L}+\left(\delta g_{R}^{W \nu}\right) \bar{\nu}_{R} \gamma_{\mu} e_{R}\right]+h . c .\right\} .
\end{aligned}
$$

Do not interfere with SM

Not independent at LO due to $\mathrm{SU}(2)$

$$
\begin{aligned}
& \delta g_{L}^{W q}=\delta g_{L}^{Z u}-\delta g_{L}^{Z d} \\
& \delta g_{L}^{W l}=\delta g_{L}^{Z \nu}-\delta g_{L}^{Z e}
\end{aligned}
$$

7 new parameters $(3+2 * 2)$

EWPO in the SMEFT

Effective Z and W couplings

At LO effective couplings depend on (Warsaw basis)

\mathcal{O}_{u}	$\left(\bar{\tau}_{\mu} l\right)\left(\overline{\left.\gamma_{7}{ }^{\mu} l\right)}\right.$	$\mathcal{O}_{\text {¢W }}$	$\left(\phi^{\dagger} \tau^{a} \phi\right) W_{\mu \mu}^{a} B^{\mu \nu}$	$\mathcal{O}_{\phi D}$	$\left(\phi^{\dagger} D^{\mu} \phi\right)^{*}\left(\phi^{\dagger} D_{\mu} \phi\right)$
$\mathcal{O}_{\text {pe }}$	($\phi^{\dagger}{\left.\stackrel{H}{D_{\mu}} \phi\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)}^{\text {a }}$	$O_{\text {¢ }}$		$\mathcal{O}_{\text {¢d }}$	$\left(\phi^{\dagger} \mathrm{B}_{\mu} \phi\right)\left(\bar{d}_{R} \mu^{\prime} d_{R}\right)$
$\mathcal{O}_{\phi q}^{(3)}$		$\mathcal{O}_{\text {¢q }}^{(1)}$	$\left(\phi^{\dagger} i \stackrel{\leftrightarrow}{\mu} \phi\right)\left(\bar{q}^{\text {a }} \chi^{\mu} q\right)$	$\mathcal{O}_{\phi l}^{(3)}$	$\left.\left(\phi^{\dagger} i \ddot{D}_{\mu}^{a} \phi\right)\left(\overline{\tau^{a}} \gamma^{\mu}\right)^{\prime}\right)$
$O_{q l}^{(1)}$	$\left(\phi^{\dagger}{\left.\stackrel{B}{O_{\mu}} \phi\right)\left(\bar{I}^{a} \gamma^{\mu}{ }^{\mu}\right)}^{\text {a }}\right.$				

Only 8 combinations can be proved at a time

$$
M_{W}, g_{L}^{z u}, g_{L}^{z d}, g_{L}^{z e}, g_{L}^{z \nu}, g_{R}^{z u}, g_{R}^{z d}, g_{R}^{z e}
$$

At NLO 10 combinations but 32 operators

Input scheme α, G_{μ}, M_{Z}

$$
\left.G_{\mu}=\frac{1}{\sqrt{2} v^{2}}\left(1+\frac{v^{2}}{\Lambda^{2}}\left(2 \mathscr{C}_{\phi l}^{(3)}-\mathscr{C}_{l l}\right)\right)+\Delta_{r}\right)
$$

$$
\text { SM and SMEFT at NLO } \Delta_{r}=\Delta_{r, S M}+\frac{v^{2}}{\Lambda^{2}} \Delta_{r, E F T}
$$

S. Dawson, PPG, PRD 97 (2018) no.9, 093003

EWPO in the SMEFT

NLO corrections are computed at order $\mathcal{O}\left(\frac{v^{2}}{\Lambda^{2}}\right)$

SM is renormalized in OS Operators are treated as MS

$$
\mathscr{C}_{i}(\mu)=\mathscr{C}_{0, i}-\frac{1}{2 \epsilon} \frac{1}{16 \pi^{2}} \gamma_{i, j} \mathscr{C}_{j}
$$

RGE mixing: new operators enter here

EWPO in the SMEFT

SMEFT @ NLO

$$
\begin{aligned}
\delta M_{W}^{L D}= & \frac{v^{2}}{\Lambda^{2}}\left\{-29.827 \mathcal{C}_{\phi l}^{(3)}+14.914 \mathcal{C}_{l l}-27.691 \mathcal{C}_{\phi D}-57.479 \mathcal{C}_{\phi W B}\right\} \\
\delta M_{W}^{N L O}= & \frac{v^{2}}{\Lambda^{2}}\left\{-35.666 \mathcal{C}_{\phi l}^{(3)}+17.243 \mathcal{C}_{l l}-30.272 \mathcal{C}_{\phi D}-64.019 \mathcal{C}_{\phi W B}\right. \\
& -0.137 \mathcal{C}_{\phi d}-0.137 \mathcal{C}_{\phi e}-0.166 \mathcal{C}_{\phi l}^{(1)}-2.032 \mathcal{C}_{\phi q}^{(1)}+1.409 \mathcal{C}_{\phi q}^{(3)}+2.684 \mathcal{C}_{\phi u} \\
& \left.+0.438 \mathcal{C}_{l q}^{(3)}-0.027 \mathcal{C}_{\phi B}-0.033 \mathcal{C}_{\phi \square}-0.035 \mathcal{C}_{\phi W}-0.902 \mathcal{C}_{u B}-0.239 \mathcal{C}_{u W}-0.15 \mathcal{C}_{W}\right\}
\end{aligned}
$$

EWPO in the SMEFT

Fit at LEP

χ^{2} at LO vs. NLO $M_{W}, \Gamma_{W}, \Gamma_{Z}, \sigma_{h}, R_{l}, R_{b}, R_{c}, A_{l, F B}, A_{b, F B}, A_{c, F B}, A_{l}, A_{b}, A_{c}$

Using LEP results

$$
\begin{aligned}
\delta \chi_{L O}^{2}=\left(\frac{1 \mathrm{TeV}}{\Lambda}\right) & \left\{32 \mathscr{C}_{\phi d}+105 \mathscr{C}_{\phi e}-445 \mathscr{C}_{\phi l}^{(1)}+639 \mathscr{C}_{\phi l}^{(3)}-49 \mathscr{C}_{\phi q}^{(1)}-60 \mathscr{C}_{\phi q}^{(3)}\right. \\
& \left.-11 \mathscr{C}_{\phi u}-424 \mathscr{C}_{l l}+491 \mathscr{C}_{\phi D}+1114 \mathscr{C}_{\phi W B}\right\}+ \text { quad .terms }
\end{aligned}
$$

$$
\begin{aligned}
& \delta \chi_{N L O}^{2}=\left(\frac{1 \mathrm{TeV}}{\Lambda}\right)\left\{27 \mathscr{C}_{\phi d}+176 \mathscr{C}_{\phi e}-402 \mathscr{C}_{\phi l}^{(1)}+667 \mathscr{C}_{\phi l}^{(3)}-19 \mathscr{C}_{\phi q}^{(1)}-93 \mathscr{C}_{\phi q}^{(3)}\right. \\
& \left.-53 \mathscr{C}_{\phi u}-403 \mathscr{C}_{l l}+503 \mathscr{C}_{\phi D}+1070 \mathscr{C}_{\phi W B}+22 \text { other terms }\right\}+ \text { quad.terms }
\end{aligned}
$$

Single parameter fits at 95\% CL

with $\wedge=1 \mathrm{TeV}$

Marginalized fits at 95\% CL

with $\wedge=1 \mathrm{TeV}$

Coefficient	LO	NLO
$\mathcal{C}_{\phi D}$	$[-0.034,0.041]$	$[-0.039,0.051]$
$\mathcal{C}_{\phi W B}$	$[-0.080,0.0021]$	$[-0.098,0.012]$
$\mathcal{C}_{\phi d}$	$[-0.81,-0.093]$	$[-1.07,-0.03]$
$\mathcal{C}_{\phi l}^{(3)}$	$[-0.025,0.12]$	$[-0.039,0.16]$
$\mathcal{C}_{\phi u}$	$[-0.12,0.37]$	$[-0.21,0.41]$
$\mathcal{C}_{\phi l}^{(1)}$	$[-0.0086,0.036]$	$[-0.0072,0.037]$
$\mathcal{C}_{l l}$	$[-0.085,0.035]$	$[-0.087,0.033]$
$\mathcal{C}_{\phi q}^{(1)}$	$[-0.060,0.076]$	$[-0.095,0.075]$

All NLO coefficients put to 0

$$
\mathscr{C}_{\phi e}=0, \mathscr{C}_{\phi q}^{(3)}=0
$$

Fits done marginalizing over 7 parameters

Large 20-30\% effects.

Single fit vs. Marginalized fit at LEP

Small effects for single fit vs. large effects for marginalized fit
Large uncertainties not taken in account at LO

EWPO in the SMEFT

Marginalized LEP vs. ILC fit

Tests of the Standard Model at the International Linear Collider, LCC Physics Working Group: arXiv:1908.11299

Input scheme uncertainties under control

Conclusions

- I have presented a calculation of the complete NLO EW and QCD corrections to the EWPO in the SMEFT.
- These results were used in a fit using the LEP data.
- Large uncertainties in the input parameter scheme result in large NLO effects in the marginalized fit.
- Effects due to the NLO corrections are smaller for the ILC. Input parameter scheme uncertainties are under control.
- For the ILC I considered only EWPO from the GigaZ run.
- Higgs and Top results, and measurements at other regimes will improve the fit and allow for a more general fit.

