EWPO with dim-6 operators

Pier Paolo Giardino

Sendai, LCWS2019

29/10/2019

S. Dawson, PPG, arXiv: 1909.02000

Precision physics can give information on new physics

- At LEP it predicted the Higgs mass.
- Now it shows a small inconsistency for the W mass.

How can we systematically look for new physics?

Assume the SM is low energy limit of an EFT

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{k=5} \sum_{i} \frac{\mathscr{C}_{i}^{k}}{\Lambda^{k-4}} \mathcal{O}_{i}^{k}$$

Scale of new physics Operators respect SM gauge symmetries

Assumptions: no "light" particles; Higgs is part of a SU(2) doublet

The theory is renormalizable order by order in Λ

We are interested only for dimension-6 operators

Induced effective couplings

$$\begin{split} L &\equiv 2M_Z \sqrt{\sqrt{2}G_{\mu}} Z_{\mu} \left[g_L^{Zq} + \delta g_L^{Zq} \right] \overline{q} \gamma_{\mu} q + 2M_Z \sqrt{\sqrt{2}G_{\mu}} Z_{\mu} \left[g_R^{Zu} + \delta g_R^{Zu} \right] \overline{u}_R \gamma_{\mu} u_R \\ &+ 2M_Z \sqrt{\sqrt{2}G_{\mu}} Z_{\mu} \left[g_R^{Zd} + \delta g_R^{Zd} \right] \overline{d}_R \gamma_{\mu} d_R + 2M_Z \sqrt{\sqrt{2}G_{\mu}} Z_{\mu} \left[g_L^{Zl} + \delta g_L^{Zl} \right] \overline{l} \gamma_{\mu} l \\ &+ 2M_Z \sqrt{\sqrt{2}G_{\mu}} Z_{\mu} \left[g_R^{Ze} + \delta g_R^{Ze} \right] \overline{e}_R \gamma_{\mu} e_R + 2M_Z \sqrt{\sqrt{2}G_{\mu}} \left(\delta g_R^{Z\nu} \right) \overline{\nu}_R \gamma_{\mu} \nu_R \\ &+ \frac{\overline{g}_2}{\sqrt{2}} \left\{ W_{\mu} \left[(1 + \delta g_L^{Wq}) \overline{u}_L \gamma_{\mu} d_L + \left(\delta g_R^{Wq} \right) \overline{u}_R \gamma_{\mu} d_R \right] \\ &+ W_{\mu} \left[(1 + \delta g_L^{Wl}) \overline{\nu}_L \gamma_{\mu} e_L + \left(\delta g_R^{W\nu} \right) \overline{\nu}_R \gamma_{\mu} e_R \right] + h.c. \right\}. \end{split}$$

Do not interfere with SM

$$\begin{split} \delta g_L^{Wq} &= \delta g_L^{Zu} - \delta g_L^{Zd} \\ \delta g_L^{Wl} &= \delta g_L^{Z\nu} - \delta g_L^{Ze} \,. \end{split}$$

Not independent at LO due to SU(2)

7 new parameters (3+2*2)

At LO effective couplings depend on (Warsaw basis)

\mathcal{O}_{ll}	$(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l)$	$\mathcal{O}_{\phi WB}$	$(\phi^{\dagger}\tau^{a}\phi)W^{a}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{\phi D}$	$\left(\phi^{\dagger}D^{\mu}\phi ight)^{*}\left(\phi^{\dagger}D_{\mu}\phi ight)$
$\mathcal{O}_{\phi e}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\overline{e}_{R}\gamma^{\mu}e_{R})$	$\mathcal{O}_{\phi u}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\overline{u}_{R}\gamma^{\mu}u_{R})$	$\mathcal{O}_{\phi d}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\overline{d}_{R}\gamma^{\mu}d_{R})$
$\mathcal{O}_{\phi q}^{(3)}$	$\left[(\phi^{\dagger}i\overleftrightarrow{D}^{a}_{\mu}\phi)(\bar{q}\tau^{a}\gamma^{\mu}q)\right]$	$\mathcal{O}_{\phi q}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{q}\tau^{a}\gamma^{\mu}q)$	$\mathcal{O}_{\phi l}^{(3)}$	$(\phi^{\dagger}i \overleftrightarrow{D}^{a}_{\mu} \phi)(\bar{l}\tau^{a}\gamma^{\mu}l)$
$\mathcal{O}_{\phi l}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{l}\tau^{a}\gamma^{\mu}l)$				

Only 8 combinations can be proved at a time

$$M_W, g_L^{zu}, g_L^{zd}, g_L^{ze}, g_L^{z\nu}, g_R^{zu}, g_R^{zd}, g_R^{ze}$$

At NLO 10 combinations but 32 operators

SM and SMEFT at NLO
$$\Delta_r = \Delta_{r,SM} + \frac{v^2}{\Lambda^2} \Delta_{r,EFT}$$

S. Dawson, PPG, PRD 97 (2018) no.9, 093003

SMEFT @ NLO

SM is renormalized in OS Operators are treated as MS

$$\mathscr{C}_{i}(\mu) = \mathscr{C}_{0,i} - \frac{1}{2\epsilon} \frac{1}{16\pi^{2}} \sqrt[\gamma_{i,j}\mathscr{C}_{j}]$$

RGE mixing: new operators enter here

E. Jenkins, A. Manohar, M. Trott JHEP 1310 (2013) 087, JHEP 1401 (2014) 035; R. Alonso, E. Jenkins, A. Manohar, M. Trott JHEP 1404 (2014) 159

$$\begin{split} \delta M_{W}^{LO} &= \frac{v^2}{\Lambda^2} \bigg\{ -29.827 \mathcal{C}_{\phi l}^{(3)} + 14.914 \mathcal{C}_{ll} - 27.691 \mathcal{C}_{\phi D} - 57.479 \mathcal{C}_{\phi WB} \bigg\} \\ \delta M_{W}^{NLO} &= \frac{v^2}{\Lambda^2} \bigg\{ -35.666 \mathcal{C}_{\phi l}^{(3)} + 17.243 \mathcal{C}_{ll} - 30.272 \mathcal{C}_{\phi D} - 64.019 \mathcal{C}_{\phi WB} \\ -0.137 \mathcal{C}_{\phi d} - 0.137 \mathcal{C}_{\phi e} - 0.166 \mathcal{C}_{\phi l}^{(1)} - 2.032 \mathcal{C}_{\phi q}^{(1)} + 1.409 \mathcal{C}_{\phi q}^{(3)} + 2.684 \mathcal{C}_{\phi u} \\ +0.438 \mathcal{C}_{lq}^{(3)} - 0.027 \mathcal{C}_{\phi B} - 0.033 \mathcal{C}_{\phi \Box} - 0.035 \mathcal{C}_{\phi W} - 0.902 \mathcal{C}_{uB} - 0.239 \mathcal{C}_{uW} - 0.15 \mathcal{C}_{W} \bigg\} \end{split}$$

$$\chi^2$$
 at LO vs. NLO

$$M_W, \Gamma_W, \Gamma_Z, \sigma_h, R_l, R_b, R_c, A_{l,FB}, A_{b,FB}, A_{c,FB}, A_l, A_b, A_c$$

Using LEP results

$$\delta\chi_{LO}^2 = \left(\frac{1\,\mathrm{TeV}}{\Lambda}\right) \left\{ 32\mathscr{C}_{\phi d} + 105\mathscr{C}_{\phi e} - 445\mathscr{C}_{\phi l}^{(1)} + 639\mathscr{C}_{\phi l}^{(3)} - 49\mathscr{C}_{\phi q}^{(1)} - 60\mathscr{C}_{\phi q}^{(3)} - 11\mathscr{C}_{\phi u} - 424\mathscr{C}_{ll} + 491\mathscr{C}_{\phi D} + 1114\mathscr{C}_{\phi WB} \right\} + \text{quad. terms}$$

$$\delta\chi^2_{NLO} = \left(\frac{1\,\text{TeV}}{\Lambda}\right) \left\{ 27\mathscr{C}_{\phi d} + 176\mathscr{C}_{\phi e} - 402\mathscr{C}^{(1)}_{\phi l} + 667\mathscr{C}^{(3)}_{\phi l} - 19\mathscr{C}^{(1)}_{\phi q} - 93\mathscr{C}^{(3)}_{\phi q} - 53\mathscr{C}_{\phi u} - 403\mathscr{C}_{ll} + 503\mathscr{C}_{\phi D} + 1070\mathscr{C}_{\phi WB} + 22 \text{ other terms} \right\} + \text{quad. terms}$$

Single parameter fits at 95% CL

with $\Lambda = I \text{ TeV}$

Coefficient	LO	NLO
\mathcal{C}_{ll}	$\left[-0.0039, 0.021 ight]$	[-0.0044, 0.019]
$\mathcal{C}_{\phi WB}$	$\left[-0.0088, 0.0013 ight]$	$\left[-0.0079, 0.0016 ight]$
$\mathcal{C}_{\phi u}$	$\left[-0.072, 0.091 ight]$	[-0.035, 0.084]
${\cal C}^{(3)}_{\phi q}$	[-0.011, 0.014]	[-0.010, 0.014]
$\mathcal{C}^{(1)}_{\phi q}$	$\left[-0.027, 0.043 ight]$	$\left[-0.031, 0.036 ight]$
$\mathcal{C}^{(3)}_{\phi l}$	$\left[-0.012, 0.0029 ight]$	[-0.010, 0.0028]
${\cal C}^{(1)}_{\phi l}$	$\left[-0.0043, 0.012 ight]$	$\left[-0.0047, 0.012 ight]$
$\mathcal{C}_{\phi e}$	$\left[-0.013, 0.0094 ight]$	$\left[-0.013, 0.0080 ight]$
$\mathcal{C}_{\phi D}$	$\left[-0.025, 0.0019 ight]$	$\left[-0.023, 0.0023 ight]$
$\mathcal{C}_{\phi d}$	[-0.16, 0.060]	[-0.13, 0.063]

5-10% effects from NLO

Fits to other coefficients that do not appear at LO not particularly informative

Contribution from Top important

Marginalized fits at 95% CL

Coefficient	LO	NLO	
$\mathcal{C}_{\phi D}$	[-0.034, 0.041]	[-0.039, 0.051]	
$\mathcal{C}_{\phi WB}$	$\left[-0.080, 0.0021 ight]$	[-0.098, 0.012]	
$\mathcal{C}_{\phi d}$	[-0.81, -0.093]	[-1.07, -0.03]	
${\cal C}^{(3)}_{\phi l}$	$\left[-0.025, 0.12 ight]$	[-0.039, 0.16]	
$\mathcal{C}_{\phi u}$	[-0.12, 0.37]	[-0.21, 0.41]	
${\cal C}^{(1)}_{\phi l}$	$\left[-0.0086, 0.036 ight]$	$\left[-0.0072, 0.037 ight]$	
\mathcal{C}_{ll}	$\left[-0.085, 0.035 ight]$	$\left[-0.087, 0.033 ight]$	
$\mathcal{C}^{(1)}_{\phi q}$	[-0.060, 0.076]	[-0.095, 0.075]	

All NLO coefficients put to 0

with $\Lambda = I \text{ TeV}$

$$\mathscr{C}_{\phi e} = 0, \, \mathscr{C}_{\phi q}^{(3)} = 0$$

Fits done marginalizing over 7 parameters

Large 20-30% effects.

Small effects for single fit vs. large effects for marginalized fit

Large uncertainties not taken in account at LO

Marginalized LEP vs. ILC fit

Tests of the Standard Model at the International Linear Collider, LCC Physics Working Group: arXiv:1908.11299

Input scheme uncertainties under control

- I have presented a calculation of the complete NLO EW and QCD corrections to the EWPO in the SMEFT.
- These results were used in a fit using the LEP data.
- Large uncertainties in the input parameter scheme result in large NLO effects in the marginalized fit.
- Effects due to the NLO corrections are smaller for the ILC. Input parameter scheme uncertainties are under control.
- For the ILC I considered only EWPO from the GigaZ run.
- Higgs and Top results, and measurements at other regimes will improve the fit and allow for a more general fit.

Olena Shmahalo/Quanta Magazine

1

A CE

Se