Precision b-quark mass determination

Y. Sumino

(Tohoku Univ.)

\&Plan of Talk

1. What's quark mass(+Yukawa coupling)? [Introduction]
2. Current status of bottom mass
3. Bottom mass determination from bottomonium 1S energy levels
4. Summary and future prospects

Quark mass definitions

- What are quark masses?
- Why do we measure them?

SM parameters at weak scale:

$$
\mathcal{L}_{S M}\left(e, g_{w}, g_{s}, v, \lambda, y_{i j}, \cdots\right) \longrightarrow \quad \begin{aligned}
& \text { connected to fundamental physics } \\
& \text { GUT models }
\end{aligned}
$$

Yukawa couplings at weak scale: $y_{q} \bar{Q}_{L} H q_{R}+h . c$.

Relation free from IR contaminations

Short-distance quark masses (e.g. $\overline{\text { MS }}$ mass)

Definitions of quark mass in pert. QCD

$\overline{\mathrm{MS}}$ mass $\bar{m} \equiv m_{\overline{\mathrm{MS}}}\left(m_{\overline{\mathrm{MS}}}\right)$
$0<\lambda_{g}<1 / \bar{m}$

Not defined beyond pert. theory Perturbative uncertainty

$$
O\left(\Lambda_{\mathrm{QCD}}\right) \lesssim 1 \mathrm{GeV}
$$

Conceptually close to Yukawa coupling at scale $\mu \sim \bar{m}$

b-flavor hadrons

Bottomonium


```
B meson
```


Particle Data Group 2019

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)
$$

$$
\text { Charge }=-\frac{1}{3} e \quad \text { Bottom }=-1
$$

b-QUARK MASS

b-quark mass corresponds to the "running mass" $\bar{m}_{b}\left(\mu=\bar{m}_{b}\right)$ in the $\overline{\mathrm{MS}}$ scheme. We have converted masses in other schemes to the MS mass using

$\overline{\text { MS }}$ MASS (GeV)	DOCUMENT ID		TECN
$4.18{ }_{-0.02}^{+0.03}$ OUR EVALUATION	of $\overline{\mathrm{MS}}$ Mass. S	e the	ideogram below.
$4.049+0.138$ -0.118	${ }^{1}$ ABRAMOWIC		HERA
4.195 ± 0.014	${ }^{2}$ BAZAVOV	18	LATT
4.184 ± 0.011	3 NARISON	18A	THEO
4.188 ± 0.008	${ }^{4}$ NARISON	18B	THEO
4.186 ± 0.037	5 PESET	18	THEO
4.197 ± 0.022	6 KIYO	16	THEO
4.183 ± 0.037	7 ALBERTI	15	THEO
$4.203+0.016$ -0.034	8 BENEKE	15	THEO
4.176 ± 0.023	${ }^{9}$ DEHNADI	15	THEO
4.21 ± 0.11	10 BERNARDONI	14	LATT
$4.169 \pm 0.002 \pm 0.008$	11 PENIN	14	THEO
4.166 ± 0.043	12 LEE	130	LATT
4.247 ± 0.034	13 LUCHA	13	THEO
4.171 ± 0.009	14 BODENSTEIN	12	THEO
4.29 ± 0.14	15 DIMOPOUL.	12	LATT
$4.18+0.05$	16 LASCHKA	11	THEO
$4.186 \pm 0.044 \pm 0.015$	${ }^{17}$ AUBERT	10 A	BABR
4.163 ± 0.016	18 CHETYRKIN	09	THEO
4.243 ± 0.049	19 SCHWANDA	08	BELL

Determination of \bar{m}_{b} from $\Upsilon(1 S)$ and $\eta_{b}(1 S)$ energy levels

Kiyo, Mishima, YS

Use $\overline{\mathrm{MS}}$ mass $\bar{m}_{b} \equiv m_{b}^{\overline{\mathrm{MS}}}\left(m_{b}^{\overline{\mathrm{MS}}}\right) \quad M_{n}=2 \bar{m}_{b}\left(1+c_{n, 1} \alpha_{s}+c_{n, 2} \alpha_{s}^{2}+\cdots\right)$

\bar{m}_{b}, \bar{m}_{c} determination

Kiyo, Mishima, YS

$$
\bar{m}_{c}^{\text {ave }}=1246 \pm 2\left(d_{3}\right) \pm 4\left(\alpha_{s}\right) \pm 23 \text { (h.o.) } \mathrm{MeV}
$$

$$
\left.\bar{m}_{b}^{\text {ave }}=4197 \pm 2\left(d_{3}\right) \pm 6\left(\alpha_{s}\right) \pm 20 \text { (h.o. }\right) \pm 5\left(m_{c}\right) \mathrm{MeV}
$$

Summary and future prospects

- Current theoretical analyses can extract the $\overline{\mathrm{MS}}$ masses \bar{m}_{b} (and \bar{m}_{c}) consistently with 20-30 MeV accuracy from different observables.

Relativistic/Non-relativistic sum rules, Quarkonium 1S energy levels, B, D masses+HQET OPE, Inclusive observables in semileptonic B decays, \cdots

- Towards high precision QCD predictions Theoretical tools: pert. QCD, EFT, OPE, lattice QCD, \cdots Higher-order computation, eliminate IR contamination (renormalons)

Moments of R-ratio

$$
\mathcal{M}_{n}^{\exp }=\mathcal{M}_{n}^{\mathrm{th}}(\text { NNNLO })
$$

Dispersion integral relating Π_{c} and R_{c} :

$$
\begin{gathered}
\Pi_{c}\left(q^{2}\right)=\frac{q^{2}}{12 \pi^{2}} \int \mathrm{~d} s \frac{R_{c}(s)}{s\left(s-q^{2}\right)}+Q_{c}^{2} \frac{3}{16 \pi^{2}} \bar{C}_{0}, \\
R_{c}(s) \propto \operatorname{Im} \Pi_{c}(s)
\end{gathered}
$$

Integral path of $\int_{C} d s \frac{\Pi_{C}(s)}{s\left(s-q^{2}\right)}$

$$
\begin{equation*}
\Pi_{c}\left(q^{2}\right)=Q_{c}^{2} \frac{3}{16 \pi^{2}} \sum_{n \geqslant 0} \bar{C}_{n} z^{n}, \tag{17}
\end{equation*}
$$

with $Q_{c}=2 / 3$ and $z=q^{2} /\left(4 m_{c}^{2}\right)$ where $m_{c}=m_{c}(\mu)$ is the $\overline{\mathrm{MS}}$ charm quark mass at the scale μ.

Moments of R-ratio

$$
\mathcal{M}_{n}^{\exp }=\mathcal{M}_{n}^{\mathrm{th}}(\text { NNNLO })
$$

Relativistic vs. non-relativistic sum rules

Heavy quarkonium states $(t \bar{t}, b \bar{b}, c \bar{c}, b \bar{c})$

Unique system: Properties of individual hadrons predictable in pert. QCD

Two theoretical foundations for computing higher-order corr. systematically

- EFT (pNRQCD, vNRQCD)
- Threshold expansion

Pineda, Soto, Brambilla, Vairo
Luke, Manohar, Rothstein
Beneke, Smirnov

$$
\mathcal{L}_{\mathrm{pNRQCD}}=S^{\dagger}\left(i \partial_{t}-\widehat{H}_{S}\right) S+O^{a \dagger}\left(i D_{t}-\widehat{H}_{O}\right)^{a b} O^{b}+g S^{\dagger} \vec{r} \cdot \vec{E}^{a} O^{a}+\cdots
$$

S, O^{a} : color singlet and octet composite-state fields
Energy levels given by poles of the full propagator of S in pNRQCD.

Scale dependence

Kiyo, Mishima, YS

Use $\overline{\mathrm{MS}}$ mass $\bar{m}_{b} \equiv m_{b}^{\overline{\mathrm{MS}}}\left(m_{b}^{\overline{\mathrm{MS}}}\right) \quad M_{n}=2 \bar{m}_{b}\left(1+c_{n, 1} \alpha_{s}+c_{n, 2} \alpha_{s}^{2}+\cdots\right)$

\bar{m}_{b}, \bar{m}_{c} determination

Kiyo, Mishima, YS

$$
\bar{m}_{c}^{\text {ave }}=1246 \pm 2\left(d_{3}\right) \pm 4\left(\alpha_{s}\right) \pm 23 \text { (h.o.) } \mathrm{MeV}
$$

PDG value $\bar{m}_{c}=1275 \pm 25 \mathrm{MeV}$

$$
\left.\bar{m}_{b}^{\text {ave }}=4197 \pm 2\left(d_{3}\right) \pm 6\left(\alpha_{s}\right) \pm 20 \text { (h.o. }\right) \pm 5\left(m_{c}\right) \quad \mathrm{MeV}
$$

$$
\text { PDG value } \bar{m}_{b}=4.18 \pm 0.03 \mathrm{GeV}
$$

PDG 2016
WEIGHTED AVERAGE
4.176 ± 0.004 (Error scaled by 1.0)

Uncertainty is nearly saturated by renormalon $\sim \Lambda_{\mathrm{QCD}} \cdot\left(\Lambda_{\mathrm{QCD}} r_{1 S}\right)^{2}$

Simultaneous determination of $\left|V_{c b}\right|$ and $m_{b}^{\overline{\mathrm{MS}}}\left(m_{b}^{\overline{\mathrm{MS}}}\right)$ from inclusive semileptonic B decays

Observables in inclusive $B \rightarrow X_{C} \ell v$ decays

$$
\begin{aligned}
\left\langle E_{\ell}^{n}\right\rangle & =\frac{1}{\Gamma_{E_{\ell}>E_{\mathrm{cut}}}} \int_{E_{\ell}>E_{\mathrm{cut}}} E_{\ell}^{n} \frac{d \Gamma}{d E_{\ell}} d E_{\ell}, \\
\left\langle m_{X}^{2 n}\right\rangle & =\frac{1}{\Gamma_{E_{\ell}>E_{\mathrm{cut}}}} \int_{E_{\ell}>E_{\mathrm{cut}}} m_{X}^{2 n} \frac{d \Gamma}{d m_{X}^{2}} d m_{X}^{2},
\end{aligned}
$$

B
m_{X} : invariant hadronic mass

OPE in $1 / m_{b}$ expansion

$$
\begin{aligned}
\Gamma_{\mathrm{sl}}= & \Gamma_{0}\left[1+a^{(1)} \frac{\alpha_{s}\left(m_{b}\right)}{\pi}+a^{\left(2, \beta_{0}\right)} \beta_{0}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+a^{(2)}\left(\frac{\alpha_{s}}{\pi}\right)^{2}\right. \\
& +\left(-\frac{1}{2}+p^{(1)} \frac{\alpha_{s}}{\pi}\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}}+\left(g^{(0)}+g^{(1)} \frac{\alpha_{s}}{\pi}\right) \frac{\mu_{G}^{2}\left(m_{b}\right)}{m_{b}^{2}} \\
& \left.+d^{(0)} \frac{\rho_{D}^{3}}{m_{b}^{3}}-g^{(0)} \frac{\rho_{\mathrm{LS}}^{3}}{m_{b}^{3}}+\text { higher orders }\right]
\end{aligned}
$$

$$
\begin{gathered}
\mu_{\pi}^{2}=\frac{1}{2 M_{B}}\langle\bar{B}| \bar{b}_{v}(i \vec{D})^{2} b_{v}|\bar{B}\rangle \\
\mu_{G}^{2}=-\frac{1}{2 M_{B}}\langle\bar{B}| \overline{b_{v}} \frac{g_{s}}{2} G_{\mu \nu} \sigma^{\mu \nu} b_{v}|\bar{B}\rangle
\end{gathered}
$$

Observables are mostly sensitive to $\approx m_{b}-0.8 m_{c}$
\Rightarrow Input $\bar{m}_{c}(3 \mathrm{GeV})=0.986(13) \mathrm{GeV}$

Fit experimental data of the observables and determine $\mu_{\pi}^{2}, \rho_{D}^{3}, \mu_{G}^{2}, \rho_{\mathrm{LS}}^{3},\left|V_{c b}\right|, \bar{m}_{b}$.

Results:

- $\chi^{2} /$ d.o.f. ≈ 0.4
- $\left|V_{\mathrm{cb}}\right|=(42.21 \pm 0.78) \times 10^{-3}$,
c.f. Determination from exclusive $B \rightarrow D^{*} \ell v$ decays

$$
\left|V_{\mathrm{cb}}\right|=\left(39.04 \pm 0.49_{\mathrm{exp}} \pm 0.53_{\text {lat }} \pm 0.19_{\mathrm{QED}}\right) \times 10^{-3}
$$

- $\bar{m}_{b} \equiv m_{b}^{\overline{\mathrm{MS}}}\left(m_{b}^{\overline{\mathrm{MS}}}\right)=4183 \pm 37 \mathrm{MeV}$

Summary

- Current theoretical analyses can extract the $\overline{\mathrm{MS}}$ masses \bar{m}_{b} and \bar{m}_{c} consistently with $\sim 30 \mathrm{MeV}$ accuracy from different observables.

Relativistic/Non-relativistic sum rules, Quarkonium 1S energy levels, Inclusive observables in semileptonic B decays, ...

- Theoretical tools: pert. QCD, EFT, OPE, lattice QCD, ‥

Higher-order computations, renormalons vs. non-pert. matrix element

