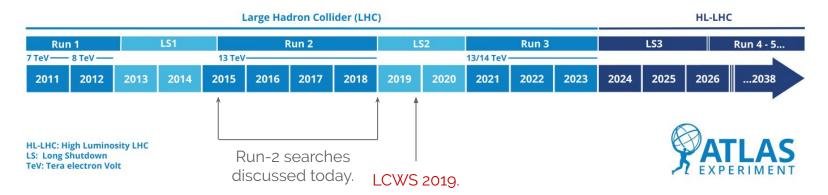
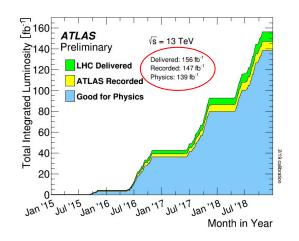
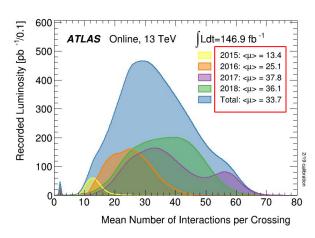


ATLAS Searches for New Physics

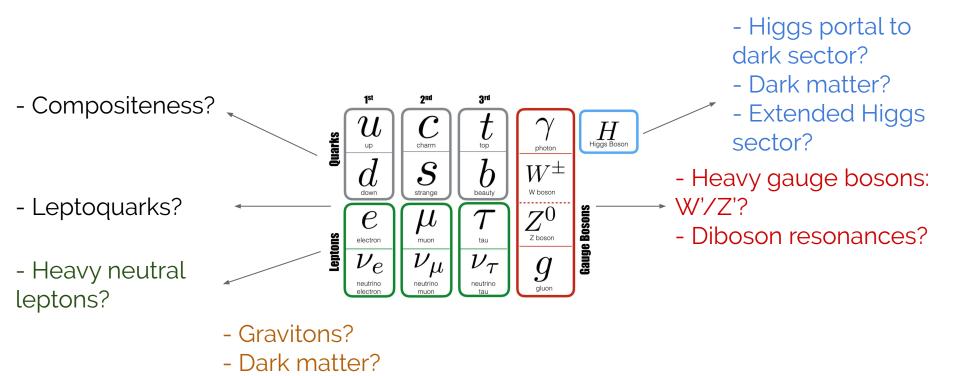

Matt Sullivan on behalf of the ATLAS collaboration LCWS'19, Sendai 31/10/2019



Talk contents


- ATLAS data-taking from 2015-2018
- Exotics searches:
 - Searches for heavy resonances.
- Searches for Supersymmetry:
 - Strong production, 3rd generation squarks, electroweak production.
- Searches for long-lived particles (LLPs):
 - Higgs portal dark photons.
 - Heavy Neutral Leptons.
- Searches for mediator-based Dark Matter:
 - Mono-object + MET, extended Higgs sector models.
- Summary.
- Prospects for High Luminosity LHC.

ATLAS in Run-2



- Both LHC and ATLAS performed extremely well in Run-2.
- Maintained ~94% data-taking and data-quality efficiency despite harsh pileup conditions.
- Provides huge opportunity for discovery of New Physics!

ATLAS Searches overview

- Supersymmetry: Hierarchy problem, DM?

1000

Top quark

___Z/γ*

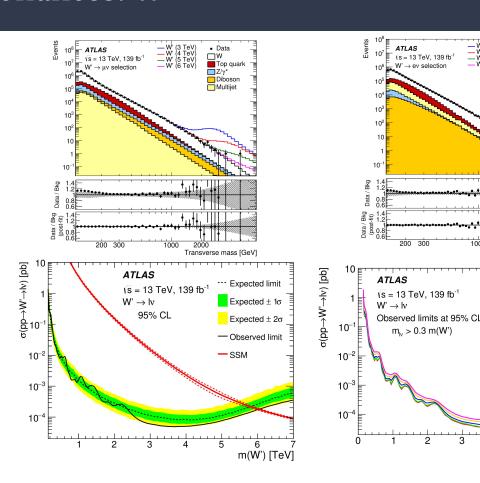
Dibosor

Transverse mass [GeV]

 $\Gamma(W') / m(W') = 0.15$

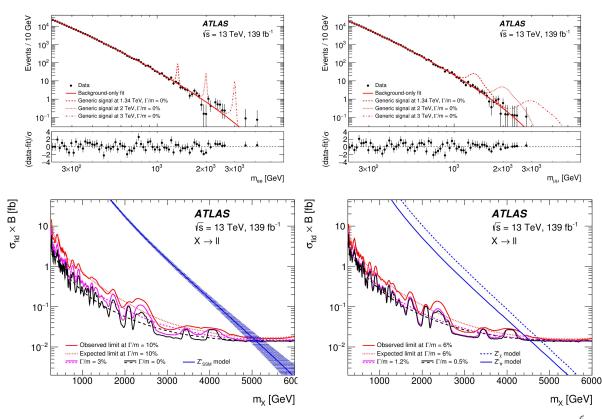
 $\Gamma(W') / m(W') = 0.10$

 $\Gamma(W') / m(W') = 0.02$

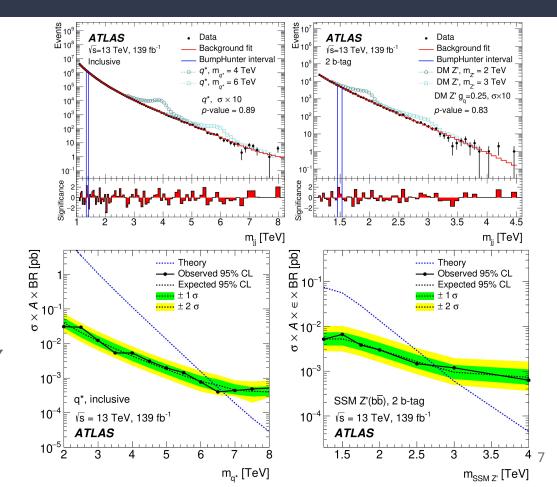

m(W') [TeV]

 $-\Gamma(W') / m(W') = 0.05$

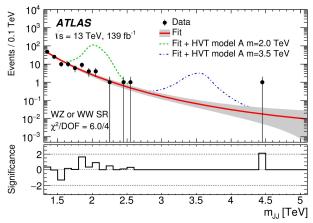
 $\Gamma(W') / m(W') = 0.01$

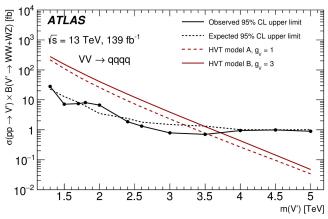

Searches for new resonances: W'

- W' predicted by many New Physics models:
 - GUT models.
 - L-R symmetry models.
 - Little Higgs models.
- Sequential Standard Model:
 - W' couples to SM leptons identically to SM W.
 - W' couplings to SM boson suppressed.
- Use MC estimate of major backgrounds, data-driven fake leptons estimate.
- Excluded to 6 (5.1) TeV in electron (muon) channel


Searches for new resonances: Z'

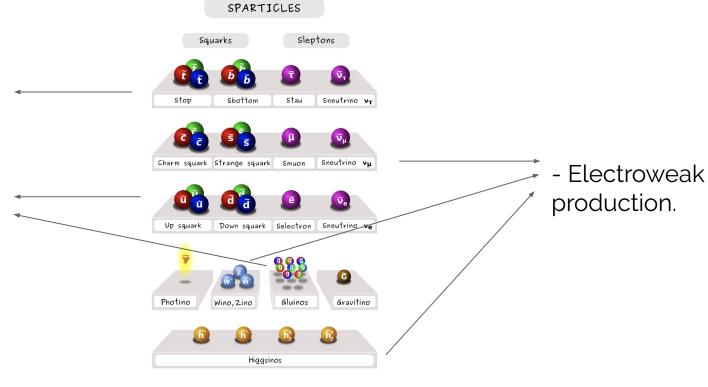
- Searches for new heavy gauge boson: Z'.
- Z' predicted by many New Physics models:
 - o SSM Z'.
 - \circ GUT Z'_x or Z'_{\psi}
 - New SÛ(2) triplet: Z'_{HVT}
- New: search for signals on smoothly-falling background-fit from data.
- No significant deviation from SM
 interpretations:
 - Z' (SSM) excluded to 5.1 TeV
 - Z'_wexcluded to 4.5 TeV


Searches for new resonances: dijets

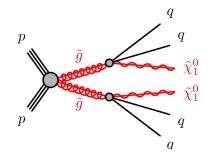

- Searches for heavy dijet + di b-jet resonances:
 - Excited quarks (q*) in models of compositeness.
 - Test generic Gaussian signal shapes.
 - SSM Z' + DM Z' mediator (bb).
- Search for resonant signal over smoothly-falling QCD background fit from data.
- Interpretations:
 - Excited quarks (q*) excluded upto 6.7
 TeV.
 - SSM Z' (bb) excluded upto 2.7 TeV.
 - DM Z' mediator upto 2.9 TeV.

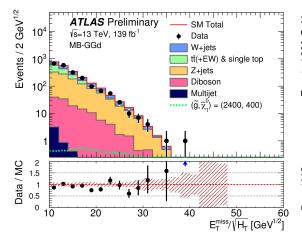
Searches for new resonances: X→VV

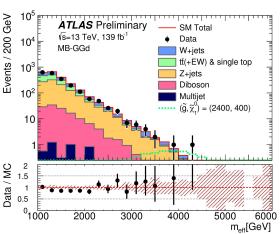
- Resonance decaying to VV pair (V = W, Z).
 - Here showing only all-hadronic final states.
- Interpretations:
 - o Spin-o radion.
 - Spin-1 Heavy Vector Triplet.
 - Spin-2 Graviton.
- Search for resonant signals on smoothly-falling background-fit from data.
- No significant deviation from SM interpretations:
 - HVT model: Excluded upto 3.8 TeV.
 - o Graviton: Excluded upto 1.8 TeV.



ATLAS Supersymmetry searches: Program structure

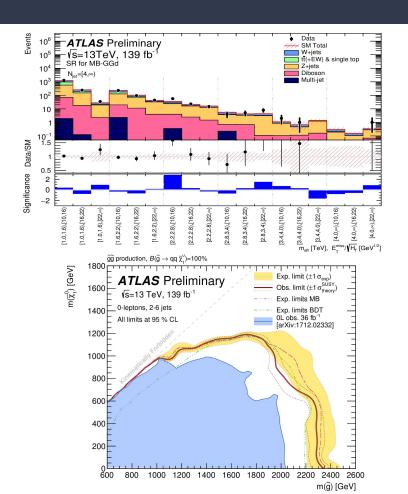

- 3rd generation searches.

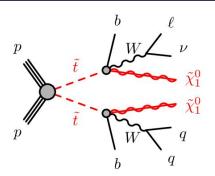

- Strong production.

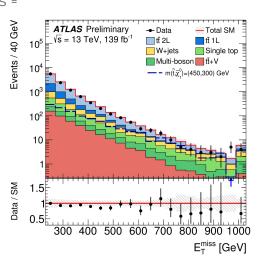


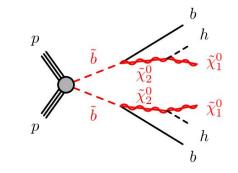
Searches for SUSY: Strong production

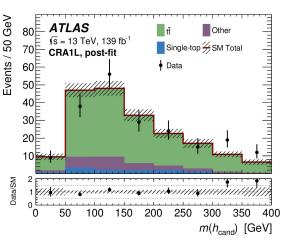
- SUSY searches well motivated by open SM questions:
 - Hierarchy problem.
 - Dark matter.
- Strong production dominant SUSY production process at LHC:
 - 3-4 orders of magnitude higher than electroweak processes.
- Searches for squarks and gluinos:
 - o High jet multiplicities.
 - \circ Large E_{τ}^{Miss} .
 - Lepton veto.



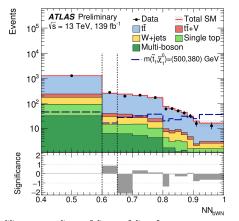

Searches for SUSY: Strong production

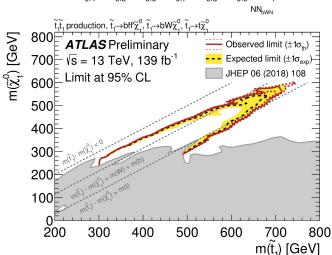

- Many signal regions targeting different scenarios:
 - Gluino-pair, squark-pair, gluino-squark production.
 - Cut-based and boosted decision tree (BDT)-based analyses.
- No significant excesses observed:
 - Direct gluino exclusion: 2.35 TeV
 - Direct squark exclusion: 1.94 TeV

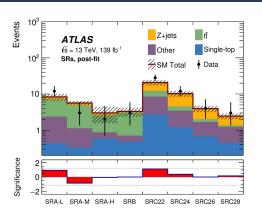


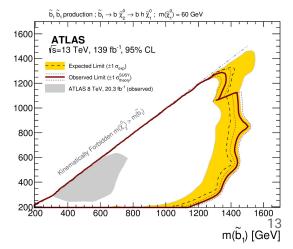

ArXiv 1908.03122

- 3rd generation squarks:
 - o 'Stop', 'Sbottom'.
 - Expected to be 'light' due to naturalness arguments.
 - Important for resolving hierarchy problem!
 - Relative lightness of 3rd gen squarks =
 expected large yields at LHC.
- Stop search:
 - Targeting 'compressed' scenarios: m(stop) - m(N1) < m(top).
- Sbottom search:
 - Target events with high b-jet multiplicities.
 - o HEPData: Link
 - Likelihood for reinterpretation:
 ATL-PHYS-PUB-2019-029

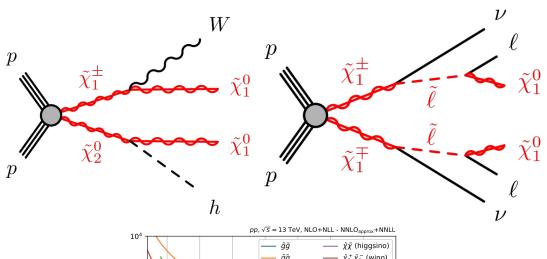

ArXiv 1908.03122

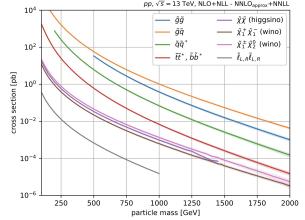

• Stop search:


- Targeting 'compressed' scenarios: m(stop) m(N1) < m(top).
- Stop squark excluded upto 720 GeV for 580 GeV N1.


Sbottom search:

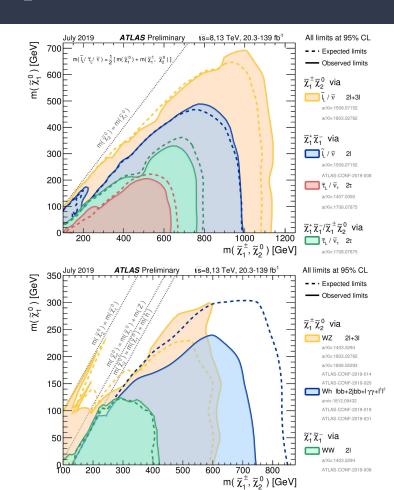
- Target two scenarios:
 m(N2)-m(N1) = 130 GeV
 and m(N1) = 60 GeV.
- Sbottom squark excluded upto 1500 GeV.





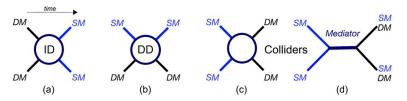
Searches for SUSY: electroweak production

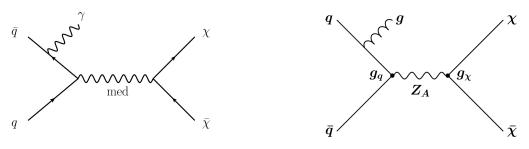
EWK SUSY:

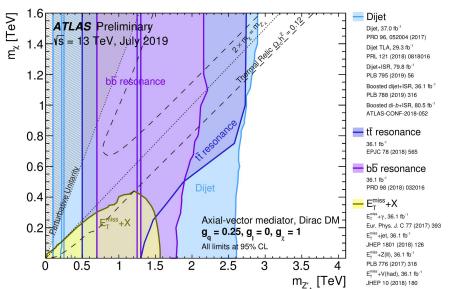

- Dominant production process if strong SUSY sector decoupled.
- Naturalness arguments result in Higgsino masses ~ electroweak scale.
- Stable LSP is important DM candidate.
- Huge Run-2 dataset:
 - EWK SUSY production cross-section orders magnitude lower than strong production.
 - Unprecedented opportunity to probe low cross-section EWK SUSY processes!

Searches for SUSY: electroweak production

- Wide search program:
 - Chargino-neutralino pair-production.
 - o Chargino-chargino pair-production.
 - Decays via SM gauge bosons and direct sleptons.
- As of yet, no significant excesses:
 - Stringent limits set on decays via direct sleptons: > 1 TeV!
 - Limits on decays via SM gauge bosons see vast improvements in Run-2: C1N2->Wh excluded upto 740 GeV.

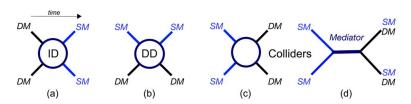


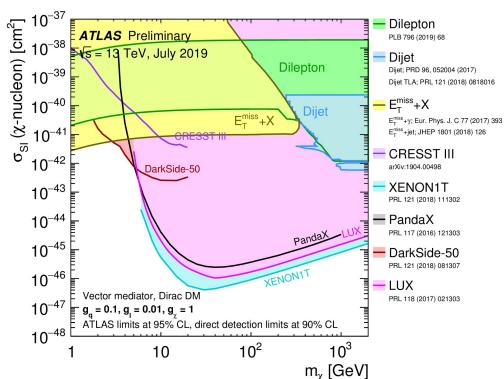

Searches for DM: mono-object + MET


JHEP 01 (2018) 126

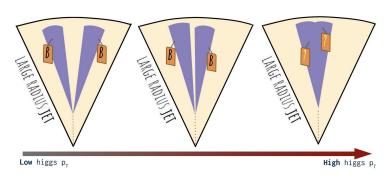
'Classic' DM search:

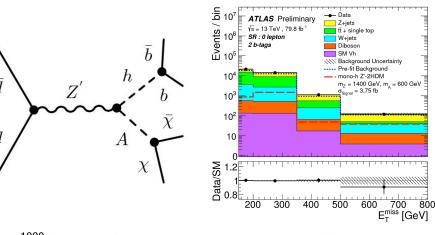
- Visible object recoiling against MET.
- Mediator-based interaction of SM and DM.
- Many search channels:
 - ∘ Y, jets, W, Z...
 - \circ Axial-vector mediator (Z_{\wedge}).

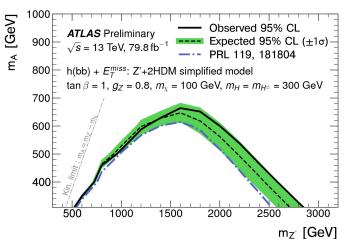




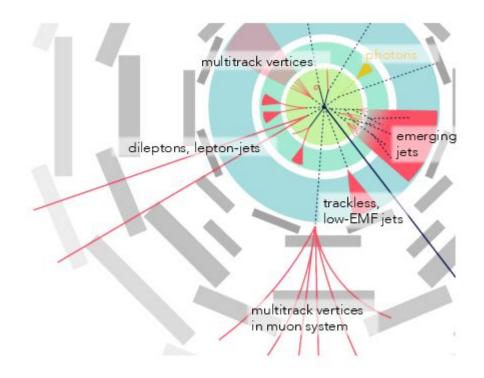
Searches for DM: direct detection comparison


- Comparisons of inferred limits with limits from direct detection experiments.
- Plots show limit on spin-independent
 WIMP-nucleon scattering cross-section.
- ATLAS excludes large regions of DM phase space - complementary with direct detection.
 - Caveat: specific model parameter choices!


Searches for DM: extended Higgs sector models

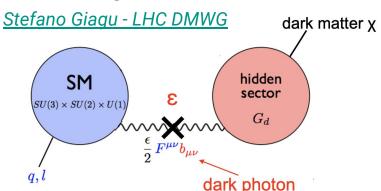

- Two Higgs Doublet model (2HDM+Z):
 - Extra Higgs doublet + additional mediator for DM - richer phenomenology.
 - Lightest CP-even state = SM Higgs.
- Exploit new methods in Run-2:
 - Use variable-radius track jets to resolve jets with small angular separation.

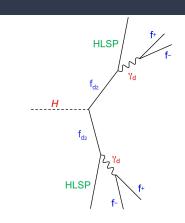
S Paredes Saenz, IOP 2019

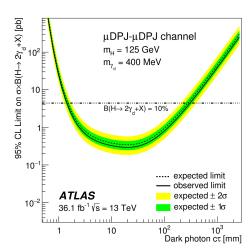

• 2HDM+Z': excluded up to 2.8 TeV.

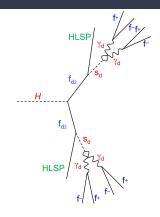
Searches for long-lived particles: overview

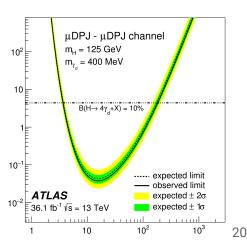
- Example signature of long-lived particles (LLPs):
 - Displacement of objects from primary vertex.
 - Depending on lifetime, can decay in tracker, calorimeter or muon system.
- Lifetime determined by mass and mixing with decay products.
- Signatures-based searches:
 - Model-specific LLP searches developed targeting specific signatures.

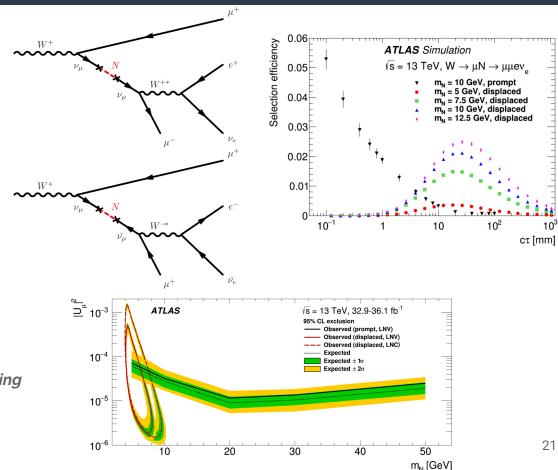

Searches for LLPs: dark photons

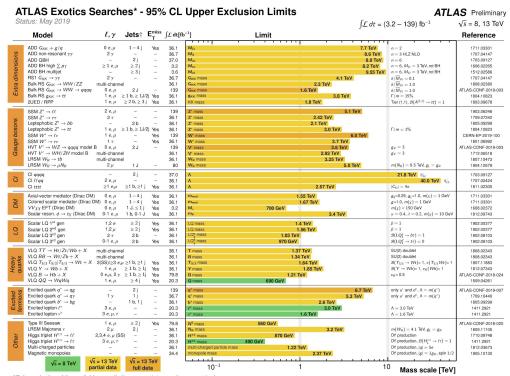

Dark sector:


- Postulated extension to SM dark fermions, dark photons...
- Higgs can be portal to dark sector with branching ratio upto 10% not excluded for exotic decays.


Dark photons:


- Lifetime can be long if small mixing between SM photon and dark photon.
- Signature: no tracks in Inner Detector!

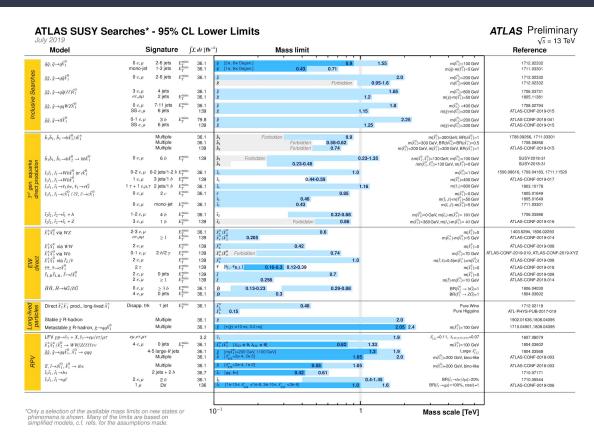



Searches for LLPs: heavy neutral leptons

- Massive neutrinos:
 - RH Majorana neutrino (HNL) → see-saw mechanism.
 - HNLs could explain SM neutrino masses, matter-antimatter asymmetry, and is a DM candidate.
- HNL-neutrino mixing:
 - Small mixing required, resulting in long-lived HNLs.
 - Signatures: prompt and displaced.
- No evidence for HNLs observed:
 - Displaced signatures: excluded coupling strength to 1.5x10⁻⁶
 - Prompt signatures: excluded coupling strength to 1.1x10⁻⁵

Summary plots: Exotics

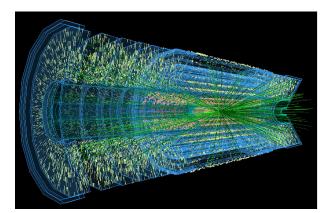
- Exotics searches cover plethora of models!
 - Summary plot shows a selection of the full search program.
- 4 full Run-2 dataset analyses shown today:
 - W', Z', dijet resonances, diboson resonances.
- Dark photon, HNL and DM searches done with partial Run-2 datasets.
- No evidence of New Physics in the data so far.
- Stringent limits set across wide parameter space.



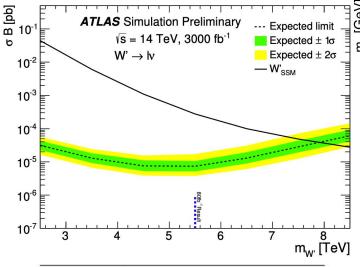
*Only a selection of the available mass limits on new states or phenomena is shown

†Small-radius (large-radius) jets are denoted by the letter j (J)

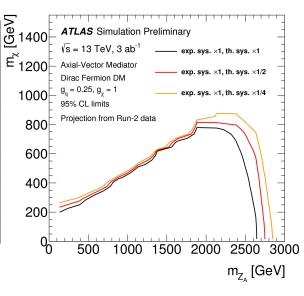
Summary plots: SUSY


- Huge program of SUSY searches on ATLAS.
- 5 full Run-2 dataset analyses shown today:
 - Strong oL.
 - o Direct stop, direct sbottom.
 - EWK C1N2 via Wh, EWK C1C1 via WW.
- No evidence of SUSY in the data so far!
- Stringent limits set in strong, 3rd gen. searches.
- EWK SUSY probed to unprecedented levels.

ATLAS at the High Luminosity LHC

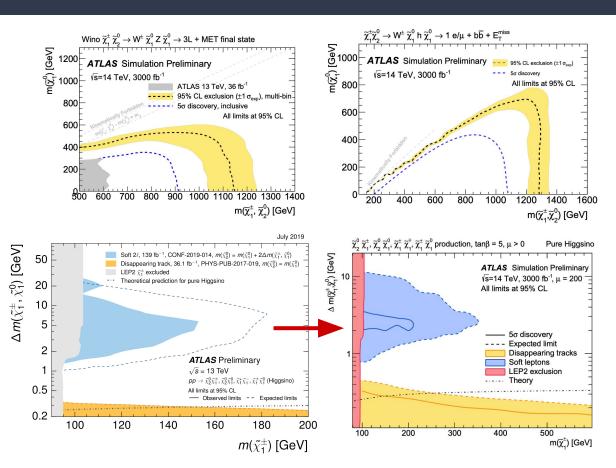


- ATLAS will face new challenges at HL-LHC.
 - Instantaneous luminosity increase x 10.
 - ~ 200 pp interactions per bunch-crossing.
- ATLAS is expected to record 3000 fb⁻¹ of data at HL-LHC!
- As part of European Strategy on Particle Physics, many HL-LHC prospects studies done.
 - o Input from ATLAS, CMS, ALICE, LHCb and theorists.
 - o 5 working groups: SM, Higgs, BSM, Flavour, Heavy Ion.
 - Summary TWiki: <u>HLHELHCWorkshop</u>



HL-LHC prospects studies: W' & mono-jet

- Both W' & mono analyses will benefit from increased luminosity.
- W'→[v:
 - Expected exclusion at HL-LHC: 7.9 TeV
 - ~ 2 TeV increase from Run-2 limit!
- Mono-jet:
 - Expected exclusion at HL-LHC: 2.52 TeV



Decay	Exclusion [TeV]	Discovery [TeV]	
$W'_{\rm SSM} \to e\nu$	7.6	7.5	
$W'_{\mathrm{SSM}} o \mu \nu$	7.3	7.1	
$W'_{\mathrm{SSM}} o \ell u$	7.9	7.7	

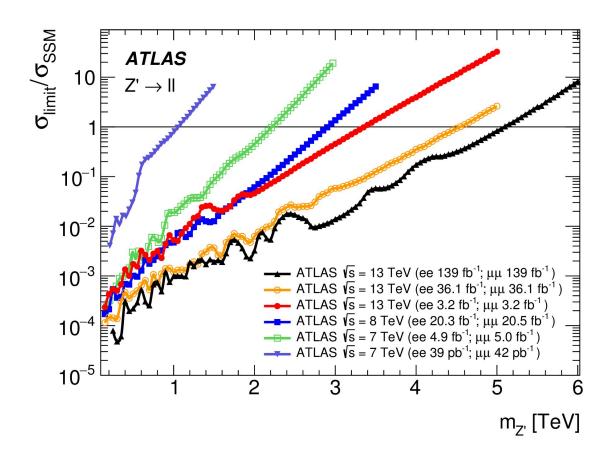
HL-LHC prospects studies: EWK SUSY

- EWK SUSY production will benefit greatly from increase in luminosity!
- Pileup and SM backgrounds challenging.
- Despite challenging conditions, HL-LHC expected to probe EWK SUSY to unprecedented levels!

Conclusions

- Huge search program, only a selection shown today:
 - **Exotics:** Heavy resonances, DM, LLPs.
 - SUSY: Strong, 3rd generation, EWK production.
 - Many New Physics scenarios probed to unprecedented levels.
- Selection of HL-LHC prospects:
 - W', EWK SUSY and mono-jet prospects shown today, many more studied for European Strategy.
 - Vast improvements expected for large number of New Physics scenarios.

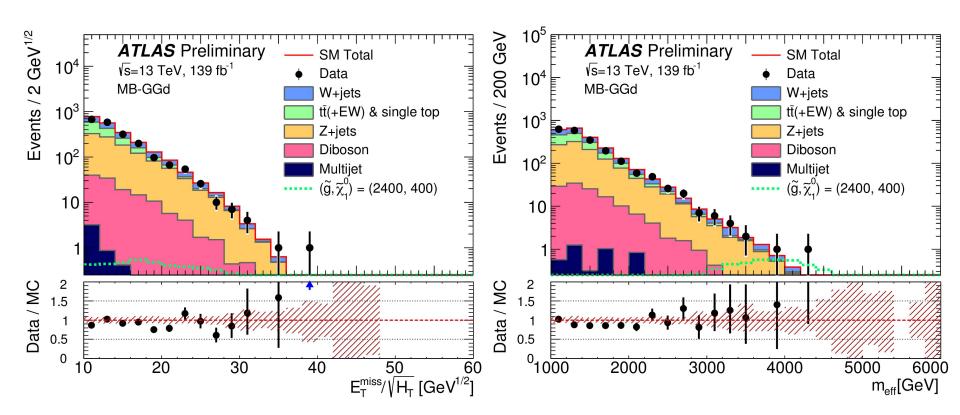
BACKUP

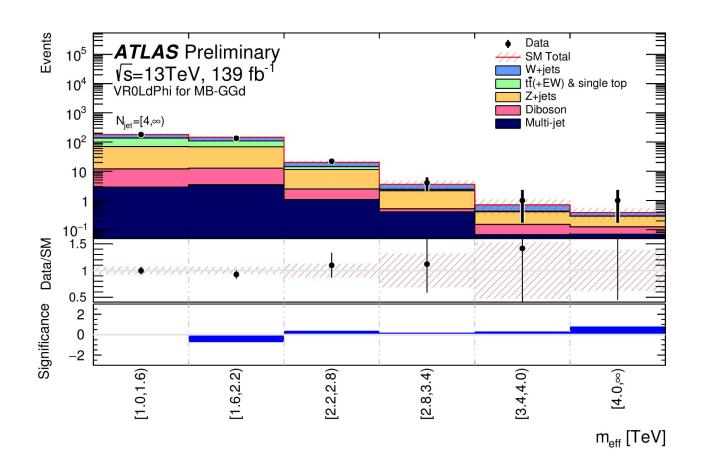

W' systematics

Source	Electron	channel	Muon channel		
	Background	Signal	Background	Signal	
	$m_{\rm T} = 2 \ (6) \ {\rm TeV}$	$m_{\rm T} = 2 \ (6) \ {\rm TeV}$	$m_{\rm T} = 2 \ (6) \ {\rm TeV}$	$m_{\rm T} = 2 \ (6) \ {\rm TeV}$	
Trigger	negl. (negl.)	negl. (negl.)	1.1% (1.0%)	1.2% (1.2%)	
Lepton reconstruction and identification	4.1% (1.4%)	4.3% (4.3%)	8.9% (37%)	6.6% (38%)	
Lepton momentum scale and resolution	3.9% (2.7%)	2.7% (4.5%)	12% (47%)	13% (20%)	
$E_{\rm T}^{ m miss}$ resolution and scale	<0.5% (<0.5%)	<0.5% (<0.5%)	<0.5% (<0.5%)	<0.5% (<0.5%)	
Jet energy resolution	<0.5% (<0.5%)	<0.5% (<0.5%)	<0.5% (0.6%)	<0.5% (<0.5%)	
Multijet background	4.4% (420%)	N/A (N/A)	0.8% (1.5%)	N/A (N/A)	
Top-quark background	0.8% (1.9%)	N/A (N/A)	0.7% (<0.5%)	N/A (N/A)	
Diboson extrapolation	1.5% (47%)	N/A (N/A)	1.3% (9.7%)	N/A (N/A)	
PDF choice for DY	1.0% (10%)	N/A (N/A)	<0.5% (1.0%)	N/A (N/A)	
PDF variation for DY	8.1% (13%)	N/A (N/A)	7.4% (14%)	N/A (N/A)	
EW corrections for DY	4.2% (4.5%)	N/A (N/A)	3.7% (7.0%)	N/A (N/A)	
Luminosity	1.6% (1.1%)	1.7% (1.7%)	1.7% (1.7%)	1.7% (1.7%)	
Total	12% (430%)	5.4% (6.4%)	17% (62%)	15% (43%)	

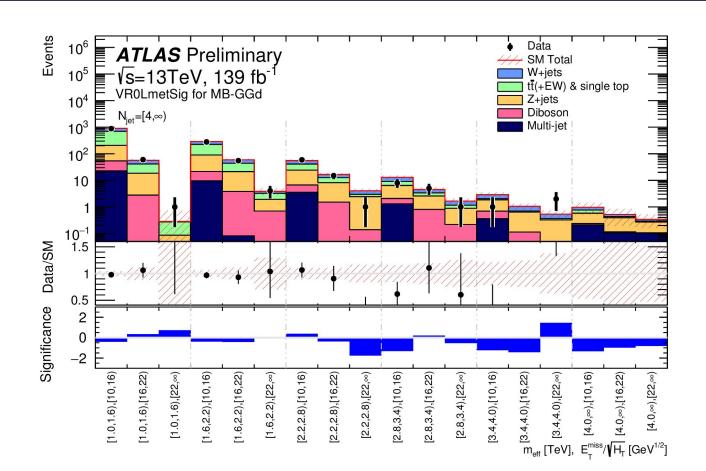
Z' systematics

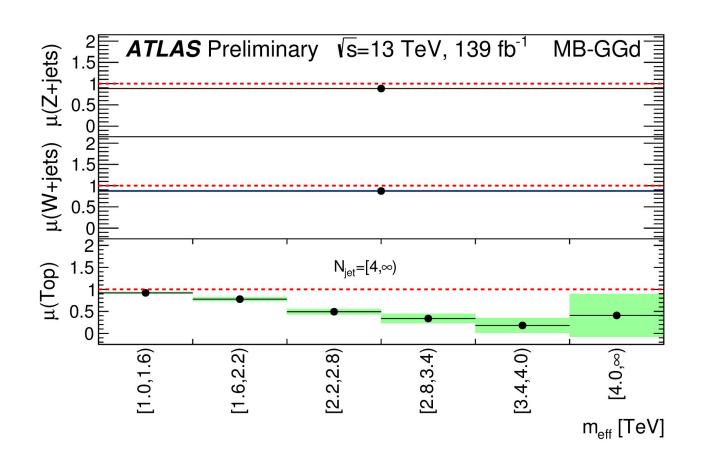
Uncertainty source	Dielectron		Dimuon	
for m_X [GeV]	300	5000	300	5000
Spurious signal	$\pm 12.5 (12.0)$	$\pm 0.1 (1.0)$	$\pm 11.7 (11.0)$	$\pm 2.1 (2.2)$
Lepton identification	$\pm 1.6 \ (1.6)$	$\pm 5.6 \ (5.6)$	$\pm 1.8 \ (1.8)$	$^{+25}_{-20} \left(^{+25}_{-20}\right)$
Isolation	$\pm 0.3 \ (0.3)$	$\pm 1.1 \ (1.1)$	$\pm 0.4 \ (0.4)$	$\pm 0.4 (0.5)$
Luminosity	$\pm 1.7 (1.7)$	$\pm 1.7 \ (1.7)$	$\pm 1.7 \ (1.7)$	$\pm 1.7 \ (1.7)$
Electron energy scale	$\begin{pmatrix} -1.7 & (+1.0) \\ -4.0 & (-1.8) \end{pmatrix}$	$^{+0.1}_{-0.4}~(\pm 0.8)$	-	-
Electron energy resolution	$\begin{array}{c} +7.9 \\ -8.3 \end{array} \begin{pmatrix} +1.1 \\ -0.9 \end{pmatrix}$	$^{+0.4}_{-0.9}~(\pm 0.1)$	=	=
Muon ID resolution	-	-	$\begin{array}{c} +0.8 \\ -2.3 \end{array} \begin{pmatrix} +0.3 \\ -0.8 \end{pmatrix}$	$^{+0.6}_{-0.4}$ $\begin{pmatrix} +0.5\\ -0.3 \end{pmatrix}$
Muon MS resolution	-	-	$^{+2.8}_{-3.8}$ $\begin{pmatrix} +1.0\\ -1.3 \end{pmatrix}$	$\pm 2.4 (2.1)$
'Good muon' requirement	-	-	$\pm 0.6 \ (0.6)$	$\begin{array}{c} +55 \\ -35 \end{array} \left(\begin{array}{c} +55 \\ -35 \end{array} \right)$


Z' limit comparison


DM MET + H systematics

Source of uncert.	Impact [%]		
Source of uncert.	(a)	(b)	(c)
<i>b</i> -tagging	4.0	8.0	10
V+jets modeling	3.5	6.0	5.0
Top modeling	3.7	4.8	4.5
MC statistics	1.8	5.4	4.9
$SM Vh(b\bar{b})$	0.8	3.2	2.1
Diboson modeling	0.8	1.5	1.1
Signal modeling	3.0	2.5	1.5
Luminosity	2.0	2.5	2.5
Small- <i>R</i> jets	1.4	3.0	2.0
Large-R jets	0.2	1.0	2.0
$E_{ m T}^{ m miss}$	1.2	1.7	1.1
Leptons	0.2	0.8	0.7
Total syst. uncert.	6.5	13	13
Statistical uncert.	2.3	20	22
Total uncertainty	7	24	25


SUSY Strong oL: Pre-fit distributions


SUSY Strong oL: VRs

SUSY Strong oL: VRs

SUSY Strong oL: CRs

