Two-loop corrections to the Higgs trilinear coupling in models with extended scalar sectors

Johannes Braathen

based on
and work in preparation
with Shinya Kanemura

International Workshop on Future Colliders
LCWS 2019, Sendai, Japan
October 31, 2019
Outline

1. Introduction: why we study λ_{hhh}

2. Non-decoupling effects at one loop

3. Our two-loop calculation in the 2HDM

4. Some numerical results
INTRODUCTION
Investigating the Higgs trilinear coupling λ_{hhh}

Probing the shape of the Higgs potential

- Since the Higgs discovery, the existence of the Higgs potential is confirmed, but at the moment we only know:
 - the location of the EW minimum: $v \simeq 246$ GeV
 - the curvature of the potential around the EW minimum: $m_h \simeq 125$ GeV

However what we still don’t know is the shape of the Higgs potential, which depends on λ_{hhh}

- λ_{hhh} determines the nature of the EWPT!
 - $\mathcal{O}(20\%)$ deviation of λ_{hhh} from its SM prediction needed to have a strong first-order EWPT
 - necessary for EWBG

[Grojean, Servant, Wells ’04], [Kanemura, Okada, Senaha ’04]
Investigating the Higgs trilinear coupling λ_{hhh}

Probing the shape of the Higgs potential

- Since the Higgs discovery, the existence of the Higgs potential is confirmed, but at the moment we only know:
 - the location of the EW minimum: $v \simeq 246 \text{ GeV}$
 - the curvature of the potential around the EW minimum: $m_h \simeq 125 \text{ GeV}$

However what we still don’t know is the shape of the Higgs potential, which depends on λ_{hhh}

- λ_{hhh} determines the nature of the EWPT!
 - $\mathcal{O}(20\%)$ deviation of λ_{hhh} from its SM prediction needed to have a strong first-order EWPT
 - necessary for EWBG [Grojean, Servant, Wells '04], [Kanemura, Okada, Senaha '04]

Alignment with or without decoupling

- Aligned scenarios already seem to be favoured \rightarrow Higgs couplings are SM-like at tree-level
- Non-aligned scenarios (e.g. in 2HDMs) could be almost entirely excluded in the close future using synergy of HL-LHC and ILC!
 - Alignment through decoupling? or alignment without decoupling?
- If alignment without decoupling, Higgs couplings like λ_{hhh} can still exhibit large deviations from SM predictions because of BSM loop effects \rightarrow still allowed by experimental results
Investigating the Higgs trilinear coupling λ_{hhh}

Current limits (LHC) on $\kappa_\lambda \equiv \lambda_{hhh}/\lambda_{hhh}^{SM}$ are (at 95% CL)

- **Double h production**: $-5.0 < \kappa_\lambda < 12.1$ (ATLAS) and $-11 < \kappa_\lambda < 17$ (CMS)

 ![Diagram](image1)

 see [ATL-PHYS-PROC-2018-117] (ATLAS), [CMS-HIG-17-008] (CMS)

- **Single h production**: $-3.2 < \kappa_\lambda < 11.9$ (ATLAS)

 ![Diagram](image2)

 see [ATL-PHYS-PUB-2019-009] (ATLAS)
Future measurements prospects for the Higgs trilinear coupling λ_{hhh}

$$\left(\kappa_3 = \frac{\lambda_{hhh}}{\lambda_{hhh}^{SM}} \right)$$

[Higgs@FC report, 1905.03764]
Radiative corrections to the Higgs trilinear coupling and non-decoupling effects
The Two-Higgs-Doublet Model (2HDM)

- CP-conserving 2HDM, with softly-broken \mathbb{Z}_2 symmetry ($\Phi_1 \to \Phi_1, \Phi_2 \to -\Phi_2$) to avoid tree-level FCNCs
- 2 $SU(2)_L$ doublets $\Phi_{1,2}$ of hypercharge $1/2$

$$V^{(0)}_{2\text{HDM}} = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 (\Phi_2^\dagger \Phi_1 + \Phi_1^\dagger \Phi_2) + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^\dagger \Phi_1|^2 + \frac{\lambda_5}{2} (\Phi_2^\dagger \Phi_1)^2 + \text{h.c.}$$

- 7 free parameters in scalar sector:
 $$m_3^2, \lambda_i \ (i = 1 \cdots 5), \tan \beta \equiv \langle \Phi_2^0 \rangle / \langle \Phi_1^0 \rangle$$

(m_1^2, m_2^2 eliminated with tadpole equations, and $\langle \Phi_1^0 \rangle + \langle \Phi_2^0 \rangle = v^2 = (246 \text{ GeV})^2$)

- Doublets expanded in terms of mass eigenstates:
 h, H: CP-even Higgses, A: CP-odd Higgs, H^\pm: charged Higgs

- $\lambda_i \ (i = 1 \cdots 5)$ traded for mass eigenvalues $m_h, m_H, m_A, m_{H\pm}$ and CP-even mixing angle α

- m_3^2 replaced by a \mathbb{Z}_2-symmetry soft-breaking mass scale $M^2 = 2m_3^2 / s_{2\beta}$
Non-decoupling effects in λ_{hhh} at one loop

First studies of the one-loop corrections to λ_{hhh} in the 2HDM in [Kanemura, Kiyoura, Okada, Senaha, Yuan '02] and [Kanemura, Okada, Senaha, Yuan '04]

- λ_{hhh} up to leading one-loop corrections (for $s_{\beta-\alpha} = 1$)
 \[
 \lambda_{hhh} = \frac{3m_h^2}{v} + \frac{1}{16\pi^2} \left[-\frac{48m_t^4}{v^3} + \sum_{\Phi=H,A,H\pm} \frac{4n_\Phi m_\Phi^4}{v^3} \left(1 - \frac{M^2}{m_\Phi^2} \right)^3 \right] + \ldots
 \]

- Masses of additional scalars $\Phi = H, A, H\pm$ in 2HDM can be written as $m_\Phi^2 = M^2 + \tilde{\lambda}_\Phi v^2$ ($\tilde{\lambda}_\Phi$: some combination of λ_i)

- Power-like dependence of BSM terms $\propto m_\Phi^4$, and
 \[
 \left(1 - \frac{M^2}{m_\Phi^2} \right)^3 \rightarrow \begin{cases}
 0, & \text{for } M^2 \gg \tilde{\lambda}_\Phi v^2 \\
 1, & \text{for } M^2 \ll \tilde{\lambda}_\Phi v^2
 \end{cases}
 \]
Non-decoupling effects in λ_{hhh} at one loop

$$
\lambda_{hhh} = \frac{3m_h^2}{v} + \frac{1}{16\pi^2} \left(-\frac{48m_t^4}{v^3} + \sum_{\Phi=H,A,H^\pm} \frac{4n_\Phi m_\Phi^4}{v^3} \left(1 - \frac{M^2}{m_\Phi^2}\right)^3 \right) + \cdots
$$

- Huge deviations possible, without violating unitarity!
- → non-decoupling effects
- [see also K. Sakurai’s talk yesterday]

- Tree level $\propto m_h^2$
- One loop $\propto m_\Phi^4$
- Not a breakdown of perturbative expansion!

Figure from [Kanemura, Okada, Senaha, Yuan '04]
One-loop calculations of λ_{hhh}

- Complete diagrammatic, OS-scheme, calculations been performed for a number of BSM models with extended sectors (with singlets, doublets, triplets)

- One-loop calculations available for 2HDMs, HSM, IDM in program H-COUP [Kanemura, Kikuchi, Sakurai, Yagyu '17], [Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu '19] [see talks by K. Sakurai and K. Mawatari]

Non-decoupling effects found for a range of BSM models at one loop
⇒ What happens at two loops? New huge corrections?
⇒ We derive dominant two-loop corrections to λ_{hhh} in a 2HDM [J.B., Kanemura '19]

Note: a few works exist at two loops, in MSSM [Brucherseifer, Gavin, Spira '14], NMSSM [Mühlleitner, Nhung, Ziesche '15], and IDM [Senaha '18], but with different motivations (more details in backup)
Our two-loop calculation of λ_{hhh} in the Two-Higgs-Doublet Model
Setup of our effective-potential calculation

Step 1: calculate $V_{\text{eff}}^{\overline{\text{MS}}}$ → **Step 2:** $\lambda_{hhh} = \left. \frac{\partial^3 V_{\text{eff}}}{\partial h^3} \right|_{\text{min.}}$ → **Step 3:** convert from $\overline{\text{MS}}$ to OS scheme

- $\overline{\text{MS}}$-renormalised two-loop effective potential is

$$V_{\text{eff}} = V^{(0)} + \kappa V^{(1)} + \kappa^2 V^{(2)}$$

(\(\kappa \equiv \frac{1}{16\pi^2}\))

- $V^{(2)}$: 1PI vacuum bubble diags., and we want to study the leading two-loop BSM corrections from *additional scalars* and *top quark*, so we only need

 - $V^{(2)}_{SSS}$
 - $V^{(2)}_{SS}$
 - $V^{(2)}_{FFS}$

- **Subleading contributions** from h, G, G^\pm, and light fermions neglected

- **Scenarios without mixing**: aligned 2HDM ($s_{\beta-\alpha} = 1$) ⇒ evade exp. constrains!

 (loop-induced deviations from alignment also neglected)
\(\lambda_{hhh} \) at two loops in the 2HDM

In [JB, Kanemura '19], we considered for the first time \(\lambda_{hhh}^{(2)} \) in the 2HDM:

\(\rightarrow \) 15 new BSM diagrams appearing in \(V^{(2)} \) in the 2HDM w.r.t. the SM case

2HDM

SM
λ_{hhh} at two loops in the 2HDM

- We assume H, A, H^\pm to have a degenerate mass m_Φ
 \rightarrow 3 mass scales in the calculation: m_t, m_Φ, M (\rightarrow simpler analytical expressions)
- In the $\overline{\text{MS}}$ scheme

$$
\delta^{(2)} \lambda_{hhh} = \frac{16 m_\Phi^4}{v^5} \left(4 + 9 \cot^2 2\beta \right) \left(1 - \frac{M^2}{m_\Phi^2}\right)^4 \left[-2M^2 - m_\Phi^2 + (M^2 + 2m_\Phi^2) \log m_\Phi^2\right] \\
+ \frac{192 m_\Phi^6 \cot^2 2\beta}{v^5} \left(1 - \frac{M^2}{m_\Phi^2}\right)^4 \left[1 + 2 \log m_\Phi^2\right] \\
+ \frac{96 m_\Phi^4 m_t^2 \cot^2 \beta}{v^5} \left(1 - \frac{M^2}{m_\Phi^2}\right)^3 \left[-1 + 2 \log m_\Phi^2\right] + \mathcal{O} \left(\frac{m_\Phi^2 m_t^4}{v^5}\right)
$$
Decoupling behaviour of the $\overline{\text{MS}}$ expressions

Decoupling theorem [Appelquist, Carazzone ’75] → corrections from additional BSM states should decouple if said states are taken to be very massive

$$m_\Phi^2 = M^2 + \tilde{\lambda}_\Phi v^2$$

To have $m_\Phi \to \infty$, then we must take $M \to \infty$, otherwise the quartic couplings grow out of control

$$\delta^{(2)} \lambda_{hhh} = \frac{16 m_\Phi^4}{v^5} \left(4 + 9 \cot^2 2 \beta \right) \left(1 - \frac{M^2}{m_\Phi^2} \right)^4 \left[-2M^2 - m_\Phi^2 + (M^2 + 2m_\Phi^2) \log m_\Phi^2 \right]$$

$$\delta^{(1)} \lambda_{hhh} = \frac{16 m_\Phi^4}{v^3} \left(1 - \frac{M^2}{m_\Phi^2} \right)^3 + \frac{192 m_\Phi^6 \cot^2 2 \beta}{v^5} \left(1 - \frac{M^2}{m_\Phi^2} \right)^4 \left[1 + 2 \log m_\Phi^2 \right]$$

$$+ \frac{96 m_\Phi^4 m_t^2 \cot^2 2 \beta}{v^5} \left(1 - \frac{M^2}{m_\Phi^2} \right)^3 \left[-1 + 2 \log m_\Phi^2 \right] + O \left(\frac{m_\Phi^2 m_t^4}{v^5} \right)$$

Fortunately all of these terms go like

$$(m_\Phi^2)^{n-1} \left(1 - \frac{M^2}{m_\Phi^2} \right)^n = \frac{(\tilde{\lambda}_\Phi v^2)^n}{M^2 + \tilde{\lambda}_\Phi v^2} \xrightarrow{M \to \infty} 0$$

$$(m_\Phi^2)^{n-1} \left(1 - \frac{M^2}{m_\Phi^2} \right)^n \xrightarrow{\tilde{\lambda}_\Phi v^2 \text{ fixed}} 0$$
Decoupling behaviour and $\overline{\text{MS}}$ to OS scheme conversion

To express $\delta^{(2)} \lambda_{hhh}$ in terms of physical parameters ($v_{\text{phys}}, M_t, M_A = M_H = M_{H\pm} = M_\Phi$), we replace

$\overline{\text{MS}}$ scheme: $\{m_H, m_A, m_{H\pm}, m_t, v\} \longrightarrow$ OS scheme: $\{M_H, M_A, M_{H\pm}, M_t, v_{\text{phys}} = (\sqrt{2}G_F)^{-1/2}\}$

A priori, M is still renormalised in $\overline{\text{MS}}$ scheme, because it is difficult to relate to physical observable... but then, expressions do not decouple for $M_{\Phi}^2 = M^2 + \tilde{\lambda}_\Phi v^2$ and $M \to \infty$!

This is because we should relate M_Φ, renormalised in OS scheme, and M, renormalised in $\overline{\text{MS}}$ scheme, with a one-loop relation \rightarrow then the two-loop corrections decouple properly.

We give a new "OS" prescription for the finite part of the counterterm for M by requiring that the decoupling of $\delta^{(2)} \hat{\lambda}_{hhh}$ (in OS scheme) is apparent using a relation $M_{\Phi}^2 = \tilde{M}^2 + \tilde{\lambda}_\Phi v^2$

$$
\delta^{(2)} \hat{\lambda}_{hhh} = \frac{48M_{\Phi}^6}{v_{\text{phys}}^5} \left(1 - \frac{\tilde{M}^2}{M_{\Phi}^2}\right)^4 \left\{ 4 + 3 \cot^2 2\beta \left[3 - \frac{\pi}{\sqrt{3}} \left(\frac{\tilde{M}^2}{M_{\Phi}^2} + 2 \right) \right] \right\} + \frac{576M_{\Phi}^6}{v_{\text{phys}}^5} \cot^2 2\beta \left(1 - \frac{\tilde{M}^2}{M_{\Phi}^2}\right)^4
+ \frac{288M_{\Phi}^4 M_t^2}{v_{\text{phys}}^5} \cot^2 \beta \left(1 - \frac{\tilde{M}^2}{M_{\Phi}^2}\right)^3 + \frac{168M_{\Phi}^4 M_t^2}{v_{\text{phys}}^5} \left(1 - \frac{\tilde{M}^2}{M_{\Phi}^2}\right)^3 - \frac{48M_{\Phi}^6}{v_{\text{phys}}^5} \left(1 - \frac{\tilde{M}^2}{M_{\Phi}^2}\right)^5 + O \left(\frac{M_{\Phi}^2 M_t^4}{v_{\text{phys}}^5} \right)
$$

Johannes Braathen (Osaka University) LCWS 2019, Sendai
Numerical results
Numerical results

In the following we show results for the BSM deviation δR:

$$
\delta R \equiv \frac{\Delta \lambda^{2\text{HDM}}_{hhh}}{\lambda^{SM}_{hhh}} = \frac{\lambda^{2\text{HDM}}_{hhh} - \lambda^{SM}_{hhh}}{\lambda^{SM}_{hhh}}
$$
Decoupling behaviour

\[\delta R \equiv \frac{\lambda_{2HDM}^{hh} hhh}{\lambda_{SM}^{hh} hhh} - 1 \]

- \(\delta R \) size of BSM contributions to \(\lambda_{hhh} \):

- Radiative corrections from additional scalars + top quark indeed decouple properly for \(\tilde{M} \to \infty \)

- \(\tilde{M} \) controls decoupling of BSM scalars in 2HDM in OS scheme!
Non-decoupling effects

\[M_H = M_A = M_{H^\pm} = M_\Phi \]
\[\tilde{M} = 0 \]
\[s_{\beta - \alpha} = 1 \]
\[t_\beta = 1.1 \]

\[\delta R \equiv \frac{\lambda_{h_2 h h}^{2HDM}}{\lambda_{h h h}^{SM}} - 1 \]

- Other limit of interest: \(\tilde{M} = 0 \rightarrow \) maximal non-decoupling effects

- \(\delta^{(1)} \lambda_{h h h} \rightarrow \propto M_\Phi^4 \)
- \(\delta^{(2)} \lambda_{h h h} \rightarrow \propto M_\Phi^6 \)

- For \(\tilde{M} = 0 \), \(\tan \beta = 1.1 \), tree-level unitarity is lost around \(M_\Phi \approx 600 \text{ GeV} \) [Kanemura, Kubota, Takasugi '93]
Maximal BSM allowed deviations

(at two loops)

\[\delta R \equiv \frac{\lambda_{h h h}^{2HDM}}{\lambda_{h h h}^{SM}} - 1 \]

◨ Here: Maximal deviation \(\delta R \)

\((1\ell+2\ell)\) while fulfilling perturbative unitarity, in \((\tan \beta, M_\Phi)\) plane

\[M_\Phi^2 = \tilde{M}^2 + \tilde{\lambda}_\Phi v^2 \]

◨ One cannot take \(M_\Phi \to \infty \) with \(\tilde{M} = 0 \) without breaking unitarity

◨ At some point \(\tilde{M} \) must be non-zero

\[\left(1 - \frac{\tilde{M}^2}{M_\Phi^2} \right)^n < 1 \]
Maximal BSM allowed deviations

(at two loops)

\[%]
\[\delta R \equiv \frac{\lambda_{h h h}^{2HDM}}{\lambda_{h h h}^{SM}} - 1 \]

▷ Here: Maximal deviation \(\delta R \)

\((1\ell+2\ell) \) while fulfilling perturbative unitarity, in \((\tan \beta, M_\Phi)\) plane

\[M_\Phi^2 = \tilde{M}^2 + \tilde{\lambda}_\Phi v^2 \]

▷ One cannot take \(M_\Phi \to \infty \) with \(\tilde{M} = 0 \) without breaking unitarity

▷ At some point \(\tilde{M} \) must be non-zero

\[\left(1 - \frac{\tilde{M}^2}{M_\Phi^2} \right)^n < 1 \]
Maximal BSM allowed deviations

(at two loops)

\[\delta R \equiv \frac{\lambda_{h,h,h}^{2HDM}}{\lambda_{h,h,h}^{SM}} - 1 \]

- Here: Maximal deviation \(\delta R \) (1\(\ell\)+2\(\ell\)) while fulfilling perturbative unitarity, in \((\tan\beta, M_\Phi)\) plane

\[M_\Phi^2 = \tilde{M}^2 + \lambda_\Phi v^2 \]

- One cannot take \(M_\Phi \to \infty \) with \(\tilde{M} = 0 \) without breaking unitarity

- At some point \(\tilde{M} \) must be non-zero \(\to \) reduction factor

\[\left(1 - \frac{\tilde{M}^2}{M_\Phi^2} \right)^n < 1 \]
Summary

- **First two-loop calculation of** λ_{hhh} **in 2HDM**, in a scenario with alignment

- Two-loop corrections to λ_{hhh} remain smaller than one-loop contributions, at least as long as perturbative unitarity is maintained → **typical size** $10 - 20\%$ **of one-loop contributions**

 - Non-decoupling effects found at one loop are **not drastically changed**
 - In the future perspective of a precise measurement of λ_{hhh}, computing corrections beyond one loop will be **necessary**

- Precise calculation of Higgs couplings (λ_{hhh}, etc.) can allow **distinguishing aligned scenarios with or without decoupling**
Thank you for your attention!
Backup
An example of experimental limits on λ_{hh}

Example of current limits on κ_λ from the ATLAS search of $hh \rightarrow b\bar{b}\gamma\gamma$

(taken from [ATLAS collaboration 1807.04873])
Momentum dependence (at one loop)

\[\Delta \lambda_{hhh}^{\text{THDM}} / \lambda_{hhh}^{\text{SM}} \quad \% \]

\[M=0 \, (\text{Max. Non-Decoupling Case}) \]
\[m_\Phi = 450 \text{GeV} \]
\[m_h = 120 \text{GeV}, \sin^2(\alpha - \beta) = 1 \]

\[\Delta \Gamma_{hhh}^{\text{loop}} / \Gamma_{hhh}^{\text{tree}} \quad \% \]
\[m_h = 100 \text{GeV} \]
\[m_t = 178 \text{GeV} \]

\[\Delta \lambda_{hhh} \quad \text{THDM/SM} \quad \% \]

\[300 \quad 400 \quad 500 \quad 600 \quad 700 \quad 800 \quad 900 \]
\[\sqrt{q^2} \text{ (GeV)} \]

\[0 \quad 50 \quad 100 \quad 150 \quad 200 \quad 250 \]

\[300 \quad 400 \quad 500 \quad 600 \quad 700 \quad 800 \quad 900 \]
\[\sqrt{q^2} \text{ (GeV)} \]

\[-10 \quad -5 \quad 0 \quad 5 \quad 10 \]

\[\Delta \Gamma_{hhh} \quad \text{loop/(q^2)/tree} \quad \% \]

\[m_h = 100 \text{GeV} \]
\[m_t = 178 \text{GeV} \]

\[(\text{scalar part}) \]

\[(\text{top quark loop}) \]

figures from [Kanemura, Okada, Senaha, Yuan '04]

Johannes Braathen (Osaka University) LCWS 2019, Sendai October 31, 2019 17 / 17
Radiative corrections to the Higgs trilinear coupling

- Higgs three-point function, $\Gamma_{hhh}(p_1^2, p_2^2, p_3^2)$, requires a diagrammatic calculation, with non-zero external momentum.

- Instead it is much more convenient to work with an effective Higgs trilinear coupling λ_{hhh}

\[\mathcal{L} \ni -\frac{1}{6} \lambda_{hhh} h^3 \rightarrow \lambda_{hhh} = \left. \frac{\partial^3 V_{\text{eff}}}{\partial h^3} \right|_{\text{min}} \]

- Γ_{hhh} and λ_{hhh} can be related as

\[-\Gamma_{hhh}(0, 0, 0) = \hat{\lambda}_{hhh} = \left(\frac{Z_h^{OS}}{Z_h^{MS}} \right)^{3/2} \lambda_{hhh} = \left(1 + \frac{3}{2} \frac{d}{dp^2} \Pi_{hh}(p^2) \bigg|_{p^2 = M_h^2} \right) \lambda_{hhh} \]

\[Z_h^{OS, MS} : \text{OS/MS WFR constants; } \Pi_{hh}(p^2) : \text{finite part of Higgs self-energy at ext. momentum } p^2 \]

- Taking $\Gamma_{hhh}(p_1^2, p_2^2, p_3^2) \simeq \Gamma_{hhh}(0, 0, 0)$ is a good approximation

\[\rightarrow \text{ shown for } \lambda_{hhh} \text{ at one loop in } [\text{Kanemura, Okada, Senaha, Yuan '04}] \text{ (difference is only a few %)} \]

\[\rightarrow \text{ no study including external momentum exists at two loops, but in the case of two-loop Higgs mass calculations, momentum effects are known to be subleading} \]
Setup of our effective-potential calculation – details

▶ OS result is obtained as

\[\hat{\lambda}_{hhh} = \left(\frac{Z_{OS}^h}{Z_{MS}^h} \right)^{3/2} \times \lambda_{hhh} \]

\text{inclusion of WFR}

\text{translated to OS ones}

▶ Let’s suppose (for simplicity) that \(\lambda_{hhh} \) only depends on one parameter \(x \), as

\[\lambda_{hhh} = \lambda^{(0)}_{hhh}(x_{\text{MS}}) + \kappa \delta^{(1)} \lambda_{hhh}(x_{\text{MS}}) + \kappa^2 \delta^{(2)} \lambda_{hhh}(x_{\text{MS}}) \quad (\kappa = \frac{1}{16\pi^2}) \]

and

\[x_{\text{MS}} = X_{\text{OS}} + \kappa \delta^{(1)} x + \kappa^2 \delta^{(2)} x \]

then in terms of OS parameters

\[\lambda_{hhh} = \lambda^{(0)}_{hhh}(X_{\text{OS}}) + \kappa \left[\delta^{(1)} \lambda_{hhh}(X_{\text{OS}}) + \frac{\partial \lambda^{(0)}_{hhh}(X_{\text{OS}})}{\partial x} \delta^{(1)} x \right] \]

\[+ \kappa^2 \left[\delta^{(2)} \lambda_{hhh}(X_{\text{OS}}) + \frac{\partial \delta^{(1)} \lambda_{hhh}(X_{\text{OS}})}{\partial x} \delta^{(1)} x + \frac{\partial \lambda^{(0)}_{hhh}(X_{\text{OS}})}{\partial x} \delta^{(2)} x + \frac{\partial^2 \lambda^{(0)}_{hhh}(X_{\text{OS}})}{\partial x^2} (X_{\text{OS}})(\delta^{(1)} x)^2 \right] \]
Setup of our effective-potential calculation – details

- OS result is obtained as

\[
\hat{\lambda}_{hhh} = \left(\frac{Z_{h}^{OS}}{Z_{h}^{MS}} \right)^{3/2} \times \lambda_{hhh} \quad \text{(inclusion of WFR)}
\]

- MS parameters translated to OS ones

Let’s suppose (for simplicity) that \(\lambda_{hhh}\) only depends on one parameter \(x\), as

\[
\lambda_{hhh} = \lambda_{hhh}^{(0)}(x^{MS}) + \kappa \delta^{(1)} \lambda_{hhh}(x^{MS}) + \kappa^2 \delta^{(2)} \lambda_{hhh}(x^{MS})
\]

\(\kappa = \frac{1}{16\pi^2}\)

and

\[
x^{MS} = X^{OS} + \kappa \delta^{(1)} x + \kappa^2 \delta^{(2)} x
\]

then in terms of OS parameters

\[
\lambda_{hhh} = \lambda_{hhh}^{(0)}(X^{OS}) + \kappa \left[\delta^{(1)} \lambda_{hhh}(X^{OS}) + \frac{\partial \lambda_{hhh}^{(0)}(X^{OS})}{\partial x} \delta^{(1)} x \right]
\]

\[
+ \kappa^2 \left[\delta^{(2)} \lambda_{hhh}(X^{OS}) + \frac{\partial \delta^{(1)} \lambda_{hhh}(X^{OS})}{\partial x} \delta^{(1)} x + \frac{\partial \lambda_{hhh}^{(0)}(X^{OS})}{\partial x} \delta^{(2)} x + \frac{\partial^2 \lambda_{hhh}^{(0)}(X^{OS})}{\partial x^2} (\delta^{(1)} x)^2 \right]
\]

because we neglect \(m_h\) in the loop corrections and \(\lambda_{hhh}^{(0)} = 3m_h^2/v\) (in absence of mixing)
Existing works at two loops

<table>
<thead>
<tr>
<th>Model [ref.]</th>
<th>Included Corrections</th>
<th>Eff. pot. approx.</th>
<th>Typical size</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSM [Brucherseifer, Gavin, Spira '14]</td>
<td>$O(\alpha_s \alpha_t)$</td>
<td>Yes</td>
<td>$O(\sim 10%)$</td>
<td>Reach similar accuracy as m_h</td>
</tr>
<tr>
<td>NMSSM [Mühlleitner, Nhung, Ziesche '15]</td>
<td>$O(\alpha_s \alpha_t)$</td>
<td>Yes</td>
<td>$O(\sim 5 - 10%)$</td>
<td>Reach similar accuracy as m_h</td>
</tr>
<tr>
<td>IDM [Senaha '18]</td>
<td>$O(\lambda_\Phi^3)$ (partial)</td>
<td>Yes</td>
<td>$O(\sim 2%)$</td>
<td>Effect on strength of EWPT</td>
</tr>
</tbody>
</table>