

TOP MASS AT FUTURE LINEAR COLLIDERS

M. BORONAT*, E. FULLANA*, J. FUSTER*, <u>P. GOMIS*</u>, A. H. HOANG^o, V. MATEU+, M. VOS*, A. WIDL^o

- * IFIC (UNIVERSITAT DE VALÈNCIA/CSIC)
- + UNIVERSIDAD DE SALAMANCA
- ^⁰ UNIVERSITÄT WIEN

CONTENT

- Top quark mass at linear colliders
- Observable definition
- Theoretical model
- Experimental strategy
- Assessment of the uncertainties
- Summary and the way forward

e+e-LINEAR COLLIDER SCENARIOS

International Linear Collider				
Stage	Integrated luminosity			
Initial @ 250 GeV	2000 fb ⁻¹			
Upgrade @ 500 GeV	4000 fb ⁻¹			

Compact Linear Collider				
Stage	Integrated luminosity			
Stage I @ 380 GeV	1000 fb ⁻¹			
Stage II @ 1500 GeV	3000 fb ⁻¹			
Stage III @ 3000 GeV	5000 fb ⁻¹			

TOP QUARK THRESHOLD SCAN

Energy scan of the threshold at steps of 1 GeV, measuring $\sigma_{t\,t}$

Uncertainties estimation				
Uncertainty	Δm _t PS (MeV)			
Statistical @ 100 fb ⁻¹	± 22			
Experimental systematics	± 25 ~ 50			
Theoretical systematics	± 30 ~ 50			
Overall	± 45 ~ 75			

ARXIV:1807,02441

A NEW OBSERVABLE

▶ Measure the top-quark mass in $e^+e^- \rightarrow t\,\bar{t}\,\gamma_{\rm ISR}$ events

- Pair production x-section depends strongly on the production energy
- A hard ISR hard photon carries away energy (return-to-the-threshold)

OBSERVABLE DEFINITION

Measure differential cross section as a function of invariant mass of the tt system (after the ISR emission)

THEORETICAL MODEL

▶ Factorization theorem by V. Mateu:

$$\sigma_{t\bar{t}\gamma_{ISR}}(m_t, s') = \sigma_{ISR}(E_{\gamma}) * \sigma_{t\bar{t}}(m_t, s')$$

- ▶ convolute the ISR emission with the tt inclusive cross section.
- ► Matched calculation for e⁺e⁻ → tt:
 - NNLL resummation at threshold
 - Fixed-order NNLO in the continuum

ANGELIKA WIDL'S LCWS17 TALK

- ightharpoonup Mass is specified in the \overline{MS} scheme. Internally, the 1S and MSR mass are used.
- $m_t = m_t^{\overline{MS}}(m_t^{\overline{MS}})$ [high energy],
- m_t 1S [threshold region],
- ► m_t^{MSR} (10 GeV < R < \overline{m}_t) [intermediate region]

EXPERIMENTAL STRATEGY

- Select tt events with a hard ISR photon
- Reconstruct the photon energy
- ► Calculate inv. mass of tt system

$$s' = s \left(1 - \frac{2E_{\gamma}}{\sqrt{s}} \right)$$

► Measure differential x-section:

$$\frac{d\sigma_{t\,\bar{t}\,\gamma}}{d\sqrt{s'}}$$

Maximum sensitivity at threshold

THEORY UNCERTAINTY

- Assess uncertainty due to missing orders by varying hard, soft and ultra-soft scales in the calculation
- ▶ Parametrized with 2 parameters: *h* and *f*

arXiv:1309.6323

Proposed scale parameters variations (A. Hoang, M. Stahlhofen)									
h	1/2	1/2	1/2	1	1	1	2	2	2
f	2	3/2	1	1	√2	√(1/2)	1	3/4	1/2
Δm _t - (MeV) @380 GeV	-44	-46	-43	0	-0.3	8	29	30	45
-Δm _t (MeV) @500 GeV	-55	-58	-54	0	-1.5	12	32	34	51

- Fit to the model with nominal (h = f = 1) scale values, with m_t as a free parameter
- ▶The resulting theory uncertainty is of ± 46 MeV at 380 GeV, and ± 55 MeV at 500 GeV

+ statistical uncertainty

LUMINOSITY SPECTRUM

- The centre of mass energy does not correspond to a δ centered at √s
- The collision energy is affected by
 - Beam energy spread
 - Beamstrahlung
- The actual collision energy is described by the luminosity spectrum

IMPACT OF THE LUMINOSITY SPECTRUM

When the observable is reweighted with the luminosity spectrum, 2 things happen:

- collisions below tt threshold cause a loss of statistics
- change in the shape causes reduced sensitivity to the top mass
- ~50% deterioration in the sensitivity

Naive statistical uncertainty estimation				
1000 fb ⁻¹	Statistical uncertainty			
380 GeV (δ spectrum)	41 MeV			
CLIC @ 380 GeV	65 MeV			

Work in progress: a method to recover the shape previous to the luminosity spectrum weighting.

Measurement relies heavily on photon energy response

The photon energy scale, LHC experience: $Z \rightarrow ee$ gives very good constraint (< 10⁻³)

Transfer to different energy non-trivial (important for ILC at sqrt(s) = 500 GeV)

Transfer to photon energy scale non-trivial (conversions, leakage → material)

ATLAS collaboration, 2019 JINST14 P03017

PHOTON ENERGY SCALE UNCERTAINTY

• Propagate the uncertainty from the photon energy

• Fit to the *nominal* model with m_t as a free parameter

mt shift for different photon energy scale uncertainties					
Nominal energy	10-2 (1%)	10-3 (0.1%)	10-4 (0.01%)		
380 GeV	+157 - 160 MeV	± 16 MeV	± 1.6 MeV		
500 GeV	+842 - 863 MeV	± 85 MeV	± 9 MeV		

We take a conservative estimate based on what is feasible at the LHC today

Full leptonic (9%)

Semi-leptonic (45%)

Fully hadronic (46%)

Selection efficiency based on full simulation study: 50%

CLIC result for threshold scan: 70.2%, BDT ~90%

ARXIV:1807.02441

EVENT SELECTION: ISR PHOTONS

 $B(M_t, \zeta_{S'})$ (fb) Contributions for Selected ISR - EneCri - m_{top} = 170 GeV

Account for ECAL resolution, 50% efficiency and luminosity spectrum

Acceptance, 50% efficiency, ECAL resolution, luminosity spectrum accounted for

	Experiment	CLIC, \sqrt{s}	$=380\mathrm{GeV}$	ILC, \sqrt{s} =	= 500 GeV
	$L_{\rm int} (fb^{-1})$	500	1000	500	4000
	Statistical	$138\mathrm{MeV}$	$93\mathrm{MeV}$	$348\mathrm{MeV}$	$109\mathrm{MeV}$
	Theory	$46\mathrm{N}$	MeV	$55\mathrm{N}$	MeV
Luminos	sity spectrum	$7\mathrm{N}$	1 eV	$7 \mathrm{N}$	IeV^*
Photon	energy scale	16 N	MeV	851	MeV
	Total	$147\mathrm{MeV}$	$105\mathrm{MeV}$	$363\mathrm{MeV}$	$149\mathrm{MeV}$

Potential to measure \overline{m}_t with 100-150 MeV precision for the nominal luminosities at CLIC and ILC

THE WAY FORWARD

- include forward calorimeters
 - Going down from 8º to 4º would double the statistics
- Inclusion of FSR (gluon)
 - Similar sensitivity to the top quark mass when compared with ISR
- Progress in the theory calculation

MASS EVOLUTION

The method we propose provides access to the threshold in the regular run (at 380 GeV or 500 GeV)

There is non-negligible sensitivity also at higher √s'

Repeat fit in several intervals

Measurement of short-distance mass for several energy scales

MASS EVOLUTION

The top quark mass in short-distance scheme is a running parameter in the QCD Lagrangian

The top quark MSR mass can be measured at different scales $R < m_{_{\! f}}$

The 500 GeV run covers R scales in the interval [20 GeV, 160 GeV], where the evolution is significant compared to the measurement uncertainty.

Provides a test of QCD in analogy to measurements of "running" $\alpha_{\rm s}$, ${\rm m_b}$, ${\rm m_c}$

MSR mass: Hoang et al., 0803.4214 Hoang et al., 1704.01580

Running top mass: CMS,

arXiv:1909.09193

We can test the evolution of the MSR mass for scales $R < m_{_{t}}$

SUMMARY

- ► A new method to measure the top quark mass in e⁺e⁻
- Matched NNLO+NNLL calculation + ISR
- Complete assessment of uncertainties
 - Stat. uncertainty (incl. acceptance & efficiency, lumi spectrum, E resolution)
 - Theory uncertainty from scale variations
 - Conservative estimate of photon energy scale
 - Luminosity spectrum uncertainty
- Precise measurement of short-distance mass in continuum:
 - total uncertainty 100 MeV (CLIC380), 150 MeV (ILC500)
- ► New (preliminary!): Sensitive to "running" of the top quark:
 - ILC500 tests m^{MSR}(R) evolution for R < m₊ with over 5σ significance

THANKS FOR YOUR ATTENTION

BACKUP

TOP QUARK PERKS

- It carries color charge → color confinement → it cannot be measured freely
- ► Has a huge mass → tiny lifetime → decays way before hadronization
- ► As it does not hadronize, it behaves as a quasi-free quark
- Its huge mass influence many QCD calculations, and can be related to high precision predictions in perturbative calculations
 - Great for precise tests of the SM
- As it cannot be spotted freely, its mass has to be measured through its influence on QCD processes
 - Theory dependent measurements → renormalization scheme

STATE OF THE ART MASS MEASUREMENTS

- Direct measurements
 - Kinematic fit
 - MC mass extracted

- Tricky theoretical interpretation

$$m_t = 172.9 \pm 0.4 \text{ GeV}$$

- Pole mass
- MS mass GeV

t-Quark Mass (Direct Measurements) (GeV)

PDG 2019

$$m_t^{pole} = 173.1 \pm 0.9 \text{ GeV}$$

$$\underline{\qquad} \underline{\qquad} \underline{\qquad} m_t = m_t (m_t)_{4.8} = 160.0$$

POTENTIAL SENSITIVITY TO THE TOP MASS

- Generation of pseudo-experiments by applying poissonian fluctuations around the expected number of events
- ~10000 datasets generated
- Fitting of the pseudo-experiments to the theoretical model with the mass as a free parameter
- The precision is estimated as the mean of the TMinuit uncertainty estimation
 - Which is in good agreement with the fitted mass distribution

Naive statistical uncertainty estimation				
Nominal energy	Integrated luminosity	Statistical uncertainty		
380 GeV	1000 fb ⁻¹	41 MeV		
500 GeV 4000 fb ⁻¹		64 MeV		

MODELING THE LUMINOSITY SPECTRUM

Luminosity spectrum

- ▶ The MC model reproduces the 4-momenta of the e+ e- pairs.
- ▶ 19 free parameters, optimisation done minimising χ^2 respect to the detector smeared data.
- 3 stages: GuineaPig beam generator, Bhabha scattering simulator and detector simulator.

ESTEBAN FULLANA TOP@LC 2017 T